

GENERAL INFORMATION

PURE50+™

Epoxy Injection Adhesive Anchoring System

PRODUCT DESCRIPTION

The Pure50+ is a two-component adhesive anchoring system. The system includes injection adhesive in plastic cartridges, mixing nozzles, dispensing tools and hole cleaning equipment. Pure50+ epoxy is designed for bonding threaded rod and reinforcing bar hardware into drilled holes in solid concrete base materials. It can also be considered for bonding together cured concrete and masonry materials together as well as filling large cracks and abandoned holes.

GENERAL APPLICATIONS AND USES

- Bonding and anchoring threaded rod and reinforcing bar into hardened concrete
- Evaluated for installation and use in dry and wet holes, including water-filled holes
- Can be installed in a wide range of base material temperatures with good working times
- Cracked and uncracked concrete conditions as well as seismic and wind loading (SDC A F)

FEATURES AND BENEFITS

- + Designed for use with threaded rod and reinforcing bar hardware elements
- + Evaluated and recognized for freeze/thaw performance and sustained loading
- + Cartridge design allows for multiple uses using extra mixing nozzles
- + Mixing nozzles proportion adhesive and provide simple delivery method into drilled holes
- + Evaluated and recognized for long term and short term loading (see performance tables)
- + Oversized hammer-drilled holes in concrete, for short term loading only (see www.DEWALT.com)

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES) ESR-3576 for cracked and uncracked concrete
- Code Compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC and 2012 IBC/IRC
- Tested in accordance with ACI 355.4/ASTM E488, and ICC-ES AC308 for use in structural concrete with designs according to ACI 318 (-19 & -14) Chapter 17 and ACI 318 Appendix D
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Florida Building Code, FBC Supplement including HVHZ (within ESR-3576)
- Compliant with NSF/ANSI/CAN Standard 61 for drinking water system components health effects
- Also classified as lead free in accordance with NSF/ANSI/CAN 372
- Compliant with California DPH for VOC emissions and South Coast AQMD for VOC content (LEED v4.1)
- Conforms to requirements of ASTM C881 including C882 and AASHTO M235, Types I, II, IV and V, Grade 3, Classes B & C (also meets Type III except for elongation)
- Department of Transportation listings see www.DEWALT.com or contact transportation agency

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors. and 05 05 19 - Post-Installed Concrete Anchors. Adhesive anchoring system shall be Pure50+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and requirements of the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Installation Specifications	2
Performance Data (ASD)	3
Strength Design Information	5
Design Strength Tables (SD)	9
Installation Instructions	
(Solid Base Materials)	12
Reference Installation Tables	13
Ordering Information	14

PURE110+ ADHESIVE IN CARTRIDGE (STANDARD THREADED ROD AND REBAR STEEL SUPPLIED BY OTHERS)

PACKAGING (1:1 MIX RATIO)

Coaxial Cartridge

• 9 fl. oz. ((265 mL or 16 in³))

Dual Cartridge (side-by-side)

- 20.5 fl. oz. (610 mL or 37 in³)
- 50.5 fl. oz. (1500 mL or 91.5 in³)

STORAGE LIFE & CONDITIONS

Dual cartridge: Two years Coaxial cartridge: Eighteen months Store in a dry, dark environment with temperature ranging from 41°F to 86°F (5°C to 30°C)

ANCHOR SIZE RANGE (TYPICAL)

- 3/8" to 1-1/4" diameter threaded rod
- No. 3 to No. 10 reinforcing bar (rebar)

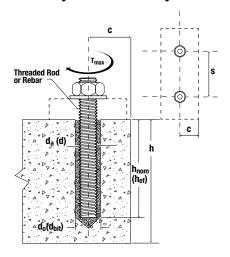
SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

PERMISSIBLE INSTALLATION CONDITIONS (ADHESIVE)

- Dry Concrete
- · Water Saturated Concrete
- · Water-Filled Holes (flooded)

INSTALLATION SPECIFICATIONS


Installation Specifications for Threaded Rod and Reinforcing Bar

		Unito			Fractiona	al Nominal F	Rod Diamet	ter (Inch) /	Reinforcing	Bar Size		
Parameter	Symbol	Units	3/8 or #3	1/2	#4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4	#10
Threaded rod outside diameter	da (d)	inch (mm)	0.375 0.500 (9.5) (12.7)		0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	-	1.250 (31.8)	-	
Rebar nominal outside diameter	da (d)	inch (mm)	0.375 (9.5)	0.5 (12	500 2.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	-	1.250 (31.8)
Nominal drill bit size (ANSI)	d _o (d _{bit})	inch	7/16	9/16	5/8	11/16 or 3/4	7/8	1	1-1/8	1-3/8	1-3/8	1-1/2
Minimum embedment ¹	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3 (7	3/4 0)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)	5 (127)
Maximum embedment ¹	h _{ef,max}	inch (mm)	7-1/2 (191)	1 (2	0 54)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)	25 (635)
Minimum member thickness	h _{min}	inch (mm)		h _{ef} + 1-1/4 (h _{ef} + 30)			$h_{\text{ef}} + 2d_{o}$					
Minimum anchor spacing	Smin	inch (mm)	1-7/8 (48)	2- ⁻ (6	1/2 4)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Minimum edge distance (up to 100% T _{max})	Cmin	inch (mm)	1-7/8 (48)	2- ⁻ (6	1/2 4)	3-1/8 (79)	3-3/4 (95)	4-3/8 (111)	5 (127)	5-5/8 (143)	6-1/4 (159)	6-1/4 (159)
Max. torque ²	Tmax	ft-lbs (N-m)	15 (20)	15 30		60 (81)	105 (142)	125 (169)	165 (221)	200 (280)	280 (379)	280 (379)
Max. torque ^{2,3} (low strength rods)	Tmax,ls-rod	ft-lbs (N-m)	5 (9) 20 (27)		40 (54)	60 (81)	100 (136)	165 (223)	-	280 (379)	-	
Min. edge distance, reduced 4,5 (up to 45% T _{max})	Cmin,red	inch (mm)	1-3/4 1-3/4 (45) (45)		1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	1-3/4 (45)	2-3/4 (70)	2-3/4 (70)	2-3/4 (70)	

For pound-inch units: 1 mm = 0.03937 inch, 1 N-m = 0.7375 ft-lbf. For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

- 1. Embedment range for use with the design provisions of 318 (-19 & -14) or ACI 318 Appendix D as applicable, ICC-ES AC308, Section 4.2 and ESR-3576.
- 2. Torque may not be applied to the anchors until the full cure time of the adhesive has been achieved.
- 3. These torque values apply to ASTM A36 / F1554 Grade 36 carbon steel threaded rods; and ASTM A193 Grade B8/B8M (Class 1) stainless steel threaded rods.
- 4. For installations below the minimum edge distance, cmin, and the reduced minimum edge distance, cmin,red, the reduced maximum torque is 0.45*Tmax.
- $5. \ \ \text{For installations below the minimum edge distance, c_{min}, down to the reduced minimum edge distance, $c_{\text{min,red}}$, the minimum anchor spacing, s_{min} is 5_{da}.}$

Detail of Steel Hardware Elements used with Injection Adhesive System

Nomenclature

 $\begin{array}{lll} d_{a}\left(d\right) & = Diameter \ of \ anchor \\ d_{o}\left(d_{bat}\right) & = Diameter \ of \ drilled \ hole \\ h & = Base \ material \ thickness \\ h_{nom}\left(h_{ef}\right) & = Embedment \ depth \\ s & = Spacing \ of \ anchors \\ c & = Edge \ distance \end{array}$

= Maximum torque

Threaded Rod and Deformed Reinforcing Bar Material Properties

A36 or F1554 Grade 36 F1554 Grade 36 36,000 58,000 F1554 Grade 55 3/8 through 1-1/4 36,000 58,000 A449 3/8 through 1 92,000 120,000 A193, Grade B7 or F1554, Grade 105 3/8 through 1-1/4 105,000 125.0 F568M Class 5.8 3/4 through 1-1/4 58,000 72,500 F593 Condition CW 3/8 through 5/8 65,000 100,000 3/4 through 1-1/4 45,000 85,000 A193/193M Grade B8/B8M, Class 1 3/8 through 1-1/4 30,000 75,000 A193/A193M Grade B8/B8M2, Class 2B 3/8 through 1-1/4 75,000 95,000 A615, A767, Grade 40 #3 through #6 40,000 60,000 A615, A767, Grade 60 #3 through #10 60,000 90,000	Steel Description (General)	Steel Specification (ASTM)	Nominal Anchor Size (inch/No.)	Minimum Yield Strength, f _y (psi)	Minimum Ultimate Strength, f _u (psi)
Carbon rod A449 A449 A193, Grade B7 or F1554, Grade 105 F568M Class 5.8 A193/193M Grade B8/B8M, Class 1 A193/A193M Grade B8/B8M2, Class 2B A615, A767, Grade 40 A615, A767, Grade 60 A449 3/8 through 1-1/4 3/8 through 1-1/4 30,000 55,000 55,000 3/8 through 1-1/4 45,000 3/8 through 1-1/4 45,000 75,000		A36 or F1554 Grade 36	0/0 !! !	36,000	58,000
Carbon rod A449 1-1/4 81,000 105,000 A193, Grade B7 or F1554, Grade 105 3/8 through 1-1/4 105,000 125.0 F568M Class 5.8 3/4 through 1-1/4 58,000 72,500 3/8 through 5/8 65,000 100,000 3/4 through 1-1/4 45,000 85,000 3/4 through 1-1/4 45,000 85,000 3/8 through 1-1/4 30,000 75,000 4193/193M Grade B8/B8M, Class 1 Grade B8/B8M2, Class 2B 3/8 through 1-1/4 75,000 95,000 A615, A767, Grade 40 A615, A767, Grade 60 #3 through #10 #3 through #10 60,000 90,000		F1554 Grade 55	3/8 through 1-1/4	55,000	75,000
1-1/4 81,000 105,000	0 1 1	A 4 4 O	3/8 through 1	92,000	120,000
F1554, Grade 105 3/8 through 1-1/4 103,000 129.0	Carbon rod	A449	1-1/4	81,000	105,000
Stainless rod F593 Condition CW 3/8 through 5/8 65,000 100,000			3/8 through 1-1/4	105,000	125.0
Stainless rod		F568M Class 5.8	3/4 through 1-1/4	58,000	72,500
Stainless rod A193/193M Grade B8/B8M, Class 1 A193/A193M Grade B8/B8M2, Class 2B A615, A767, Grade 40 A615, A767, Grade 60 #3 through #10 60,000 90,000		EEO2 Condition CW	3/8 through 5/8	65,000	100,000
Grade B8/B8M, Class 1 3/8 through 1-1/4 30,000 75,000 A193/A193M Grade B8/B8M2, Class 2B 3/8 through 1-1/4 75,000 95,000 A615, A767, Grade 40 #3 through #6 40,000 60,000 A615, A767, Grade 60 #3 through #10		F393 CONTUITION CW	3/4 through 1-1/4	45,000	85,000
Grade B8/B8M2, Class 2B 3/8 through 1-1/4 75,000 95,000 A615, A767, Grade 40 #3 through #6 40,000 60,000 A615, A767, Grade 60 #3 through #10 60,000 90,000	Stainless rod	71100/100111	3/8 through 1-1/4	30,000	75,000
A615, A767, Grade 60 #3 through #10 60,000 90,000			3/8 through 1-1/4	75,000	95,000
#3 through #10		A615, A767, Grade 40	#3 through #6	40,000	60,000
Reinforcing Bar A706, A767, Grade 60 #3 till Ought #10 60,000 80,000		A615, A767, Grade 60	#2 through #10	60,000	90,000
	Reinforcing Bar	A706, A767, Grade 60	#3 tillough #10	60,000	80,000
A615, A767, Grade 75 #3 through #10 75,000 100,000		A615, A767, Grade 75	#3 through #10	75,000	100,000
A706, A767, Grade 80 #3 through #10 80,000 100,000		A706, A767, Grade 80	#3 through #10	80,000	100,000

PERFORMANCE DATA (ASD)

Ultimate and Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

					Minimum Concrete C	Compressive Strength			
Rod Diameter	Drill Diameter	Minimum Embedment	f'c = 2,	,500 psi	f'c = 3,	,000 psi	f'c = 4,000 psi		
d (in.)	dbit (in.)	Depth h _{nom} (in.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	
3/8	7/16	3-3/8	9,515	2,380	9,925	2,480	9,925	2,480	
1/2	9/16	4-1/2	15,750	3,940	16,420	4,110	19,010	4,750	
5/8	11/16 or 3/4	5-5/8	21,930	5,485	22,870	5,720	28,030	7,005	
3/4	7/8	6-3/4	31,985	7,995	33,355	8,340	37,655	9,415	
7/8	1	7-7/8	40,380	10,095	42,110	10,530	48,155	12,040	
-	1-1/8	9	50,300	12,575	52,455	13,115	60,570	15,145	
	1-1/0	10	66,840	16,710	69,700	17,425	74,470	18,615	
1-1/4	1-3/8	11-1/4	81,060	20,270	84,535	21,130	90,315	22,580	
1-1/2	1-3/4	13-1/2	110,585	27,645	115,320	28,830	123,205	30,805	

- 1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
- 2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.
- 3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2dn].
- 4. The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in water-filled holes (flooded) require a 15% reduction in capacity.
- 5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.
- 6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

Ultimate and Allowable Load Capacities for Pure50+ Installed with Reinforcing Bar into Normal-Weight Concrete (based on bond strength/concrete capacity)^{1,2,3,4,5,6}

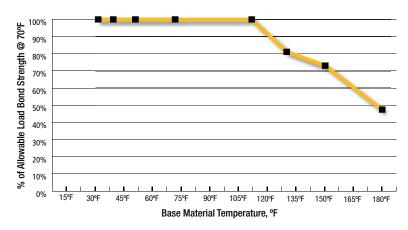
		Minimum			Minimum Concrete C	ompressive Strength		
Bar Size	Drill Diameter	Embedment	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	,000 psi
d No.	d _{bit} (in.)	Depth h _{nom} (in.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Ultimate Tension Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)
#3	7/16	3-3/8	9,730	2,435	10,150	2,540	10,150	2,540
#4	9/16	4-1/2	16,155	4,040	16,850	4,215	18,240	4,560
#5	11/16 or 3/4	4	15,735	3,935	16,405	4,100	16,570	4,145
#3	11/10 01 3/4	5-5/8	22,010	5,505	22,950	5,740	25,190	6,295
#6	7/8	6-3/4	30,890	7,720	32,210	8,050	38,330	9,585
#7	1	7-7/8	37,545	9,385	39,150	9,790	41,830	10,460
#8	1-1/8	9	50,230	12,560	52,385	13,095	60,485	15,125
#9	1-3/8	10-1/8	59,435	14,860	61,985	15,495	66,220	16,560
#10	1-1/2	11-1/4	74,330	18,580	77,510	19,380	82,815	20,700
#11	1-3/4	12-3/8	90,895	22,725	94,765	23,700	101,265	25,320

- 1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance).. Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
- 2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.
- 3. The tabulated load values are applicable to single anchors installed at critical edge and spacing distances of 3 times embedment and where the minimum member thickness is greater of [hnom + 1-1/4"] and [hnom + 2doit].
- 4. The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water saturated (wet) concrete or in water-filled holes (flooded) require a 15% reduction in capacity.
- 5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.
- Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load. Allowable shear capacity is controlled by allowable steel strength for the given conditions.

Allowable Load Capacities for Pure50+ Installed with Threaded Rod into Normal-Weight Concrete with 1-3/4" Edge Distance (Based on Bond Strength / Concrete Capacity)^{1,2,3,4,5,6}

Nominal	Minimum		Mir	nimum Concrete Compi	ressive Strength - f'c (psi)		
Anchor	Embedment	2,50	0 psi	3,00	0 psi	4,000 psi		
Diameter d (in.)	Depth h _{nom} (in.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)	
3/8	3-3/8	1,615	1,800	1,675	1,800	1,775	1,800	
1/2	4-1/2	2,405	2,480	2,495	2,480	2,645	2,480	
5/8	5-5/8	2,900	3,195	3,010	3,195	3,190	3,195	
3/4	6-3/4	3,100	2,590	3,215	2,590	3,405	2,590	

- 1. Allowable load capacities listed are calculated using an applied safety factor of 4.0 which includes an assessment of freezing/thawing conditions and sensitivity to sustained loads (i.e. creep resistance). Consideration of safety factors of 10 or higher may be necessary depending on the application, such as life safety or overhead.
- 2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths..
- 3. The tabulated load values are applicable to single anchors at critical spacing distance of 3 times embedment where the minimum member thickness is greater of [hoom + 1-1/4"] and [hoom + 2doi].
- The tabulated load values are for applicable for dry uncracked concrete in holes must be drilled with a hammer drill and an ANSI carbide drill bit. Installations in water-saturated concrete (wet) or in water-filled holes (flooded) require a 15% reduction in capacity.
- 5. Adhesives experience reductions in capacity at elevated temperatures. See the in-service temperature chart for allowable load capacity reduction factors.
- 6. Allowable bond strength/concrete capacity must be checked against allowable steel strength in tension to determine the controlling allowable load.



Allowable Load Capacities for Threaded Rod and Reinforcing Bar (Based on Steel Strength) 1.2.3.4

							Steel Ele	ements -	Threaded	l Rod an	d Reinfor	cing Bar						
Nominal Rod Diameter or Rebar	A36 or Grad		A36 or Grad	F1554, e 55	B7 or i	Grade F1554, e 105	F 593, CW (SS)		ASTM A615 Grade 40 Rebar		ASTM A615 Grade 60 Rebar		ASTM A706 Grade 60 Rebar		ASTM A615 Grade 75 Rebar		ASTM A706 Grade 80 Rebar	
Size (in. or No.)	Tension lbs. (kN)	Shear lbs (kN)	Tension Ibs. (kN)	Shear lbs (kN)	Tension lbs. (kN)	Shear lbs (kN)	Tension lbs. (kN)	Shear lbs (kN)	Tension lbs.	Shear lbs (kN)	Tension lbs. (kN)	Shear lbs (kN)	Tension Ibs. (kN)	Shear lbs (kN)	Tension lbs. (kN)	Shear lbs (kN)	Tension lbs. (kN)	Shear lbs (kN)
3/8 or #3	2,115	1,090	2,735	1,410	4,555	2,345	3,645	1,880	2,210	1,125	2,650	1,690	2,650	1,500	2,650	1,875	2,650	1,875
1/2 or #4	3,760	1,935	4,860	2,505	8,100	4,170	6,480	3,340	3,925	2,005	4,710	3,005	4,710	2,670	4,710	3,335	4,710	3,335
5/8 or #5	5,870	3,025	7,595	3,910	12,655	6,520	10,125	5,215	6,135	3,130	7,365	4,695	7,365	4,170	7,365	5,215	7,365	5,215
3/4 or #6	8,455	4,355	10,935	5,635	18,225	9,390	12,390	6,385	8,835	4,505	10,605	6,760	10,605	6,010	10,605	7,510	10,605	7,510
7/8 or #7	11,510	5,930	14,885	7,665	24,805	12,780	16,865	8,690	-	-	14,430	9,200	14,430	8,180	14,430	10,220	14,430	10,220
1 or #8	15,035	7,745	19,440	10,015	32,400	16,690	22,030	11,350	-	-	18,850	12,015	18,850	10,680	18,850	13,350	18,850	13,350
#9	-	-	-	-	-	-	-	-	-	-	23,985	15,290	23,985	13,590	23,985	16,990	23,985	16,990
1-1/4	23,490	12,100	30,375	15,645	50,620	26,080	34,425	17,735	-	-	-	-	-	-	-	-	-	-
#10	-	-	-	-	-	-	-	-	-	-	30,405	19,380	30,405	17,230	30,405	21,535	30,405	21,535

- 1. AISC defined steel strength (ASD) for threaded rod: Tensile = 0.33 Fu Anom, Shear = 0.17 Fu Anom
- 2. For reinforcing bars: The allowable steel tensile strength is based on 20 ksi for Grade 40 and 24 ksi for Grade 60 and higher, applied to the cross sectional area of the bar; allowable steel shear strength = 0.17 • Fu • Anom
- 3. Allowable load capacities are calculated for the steel element type. Consideration of applying additional safety factors may be necessary depending on the application, such as life safety
- 4. Allowable steel strength in tension must be checked against allowable bond strength/concrete capacity in tension to determine the controlling allowable load.

In-Service Temperature Chart For Allowable Load Capacities

STRENGTH DESIGN INFORMATION

Steel Tension and Shear Design for Threaded Rod in Normal Weight Concrete

						Nominal	Rod Diamete	er¹ (inch)		
	Design Information	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1-1/4
Threaded rod	nominal outside diameter	d	inch	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Throadad rad	effective cross-sectional area		(mm) inch²	(9.5) 0.0775	(12.7) 0.1419	(15.9) 0.2260	(19.1) 0.3345	(22.2) 0.4617	(25.4) 0.6057	(31.8) 0.9691
Tilleaded fou		Ase	(mm²) lbf	(50) 4.495	(92) 8,230	(146) 13,110	(216) 19.400	(298) 26.780	(391) 35,130	(625) 56,210
ASTM A36	Nominal strength as governed by	N _{sa}	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
and ASTM F1554	steel strength (for a single anchor)	V_{sa}	lbf (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)
Grade 36	Reduction factor for seismic shear	C (V,seis	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ² Strength reduction factor for shear ²	$\frac{\phi}{\phi}$	-				0.75 0.65			
	Strength reduction lactor for shear	'	- Ibf	5,810	10.640	16,950	25,085	34,625	45,425	72,680
	Nominal strength as governed by steel strength(for a single anchor)	N _{sa}	(kN)	(25.9) 3,485	(47.3) 6,385	(75.4) 10,170	(111.6) 15,050	(154.0)	(202.0)	(323.3) 43,610
ASTM F1554 Grade 55		Vsa	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.2)	(194.0)
arado oo	Reduction factor for seismic shear	ØV,seis ↓	-	0.80	0.80	0.80	0.80 0.75	0.80	0.80	0.80
	Strength reduction factor for tension ² Strength reduction factor for shear ²	$\phi \over \phi$	-				0.75			
AOTAA A400	Nominal strength as governed by	Nsa	lbf (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)
ASTM A193 Grade B7	steel strength (for a single anchor)	V _{sa}	Ìbf	5,815	10,640	16,950	25,085	34,625	45,425	72,680
and ASTM F1554	Reduction factor for seismic shear	ØV,seis	(kN) -	(25.9) 0.80	(7.3) 0.80	(75.4) 0.80	(111.6) 0.80	(154.0) 0.80	(202.1) 0.80	(323.3)
Grade 105	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	-	0.000	17.005	07.400	0.65	I 55 005	70.005	101 755
	Nominal strength as governed by steel strength	Nsa	lbf (kN)	9,300 (41.4)	17,025 (75.7)	27,120 (120.6)	40,140 (178.5)	55,905 (248.7)	72,685 (323.3)	101,755 (452.6)
ASTM A449	(for a single anchor)	V_{sa}	lbf (kN)	5,580 (24.8)	10,215 (45.4)	16,270 (72.4)	24,085 (107.1)	33,540 (149.2)	43,610 (194.0)	61,050 (271.6)
	Reduction factor for seismic shear		-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	φ	-				0.75			
	Strength reduction factor for shear ²	φ	- lbf	5,620	10,290	16,385	0.65 24,250	33,475	43,915	
107115500	Nominal strength as governed by	Nsa	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.4)	_5
ASTM F568 Class 5.8	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,370 (15.0)	6,175 (27.5)	9,830 (43.7)	14,550 (64.7)	20,085 (89.3)	26,350 (117.2)	_5
(ISO 898-1)	Reduction factor for seismic shear		-	0.80	0.80	0.80	0.80	0.80	0.80	_5
	Strength reduction factor for tension ³ Strength reduction factor for shear ³	$\phi \phi$	-				0.65 0.60		-	
			lbf	7,750	14,190	22,600	28,430	39,245	51,485	82,370
ASTM F593	Nominal strength as governed by steel strength (for a single anchor)		(kN) Ibf	(34.5) 4,650	(63.1) 8,515	(100.5) 13,560	(126.5) 17,060	(174.6) 23,545	(229.0) 30,890	(366.4) 49,425
CW Stainless	otoor ou origin (ren a oringio anonor)	Vsa	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.8)
(Types 304 and 316)	Reduction factor for seismic shear	C (V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
,	Strength reduction factor for tension ³ Strength reduction factor for shear ³	$\phi \phi$	-				0.65 0.60			
	Strength reduction factor for shear		- Ibf	4,420	8,090	12,880	19,065	26,315	34,525	55,240
ASTM A193	Nominal strength as governed by	Nsa	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)
Grade B8/B8M, Class 1	steel strength (for a single anchor)4	Vsa	lbf (kN)	2,650 (11.8)	4,855 (21.6)	7,730 (34.4)	11,440 (50.9)	15,790 (70.2)	20,715 (92.1)	33,145 (147.4)
Stainless (Types 304	Reduction factor for seismic shear		`-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
and 316)	Strength reduction factor for tension ² Strength reduction factor for shear ²	$\phi \qquad \phi \qquad \qquad \phi$	-	-			0.75 0.65			
ASTM A193	Sa origin roduction factor for shear		lbf	7,365	13,480	21,470	31,775	43,860	57,545	92,065
Grade B8/	Nominal strength as governed by	N _{sa}	(kN)	(32.8)	(60.0)	(95.5)	(141.3)	(195.1)	(256.0)	(409.5)
B8M2, Class 2B	steel strength (for a single anchor)	V _{sa}	lbf (kN)	4,420 (19.7)	8,085 (36.0)	12,880 (57.3)	19,065 (84.8)	26,315 (117.1)	34,525 (153.6)	55,240 (245.7)
Stainless	Reduction factor for seismic shear		-	0.70	0.70	0.80	0.80	0.80	0.80	0.80
(Types 304 and 316)	Strength reduction factor for tension ² Strength reduction factor for shear ²	$\phi \phi$	-	-			0.75 0.65			
= 0	Outengui reduction lactor for Shear	Ψ		1.11 0.0010			0.00			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

Values provided for steel element material types are based on minimum specified strengths and calculated in accordance with ACl 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACl 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACl 318-11 Eq. (D-2) and Eq. (D-29), as applicable, except where noted. Nuts and washers must be appropriate for the rod. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements.

^{3.} The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements

^{4.} In accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 17.4.1.2 and 17.5.1.2 or ACI 318-11 D.5.1.2 and D.6.1.2, as applicable, the calculated values for nominal tension and shear strength for ASTM A193 Grade B8/B8M Class 1 stainless steel threaded rods are based on limiting the specified tensile strength of the anchor steel to 1.9fy or 57,000 psi (393 MPa).

^{5.} The referenced standard includes rod diameters up to and including 1-inch (24 mm).

Steel Tension and Shear Design for Reinforcing Bars in Normal Weight Concrete

	Barton Information	0				Nomina	l Reinforcin	g Bar Size	(Rebar) ¹		
	Design Information	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Rebar nomi	nal outside diameter	d	inch (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.7)	1.250 (32.3)
Rebar effect	tive cross-sectional area	Ase	inch² (mm²)	0.110 (71.0)	0.200 (129.0)	0.310 (200.0)	0.440 (283.9)	0.600 (387.1)	0.790 (509.7)	1.000 (645.2)	1.270 (819.4)
	Nominal strength as governed by	N _{sa}	lbf (kN)	11,000 (48.9)	20,000 (89.0)	31,000 (137.9)	44,000 (195.7)	60,000 (266.9)	79,000 (351.4)	100,000 (444.8)	127,000 (564.9)
ASTM A615	steel strength (for a single anchor)	Vsa	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	36,000 (160.1)	47,400 (210.8)	60,000 (266.9)	76,200 (338.9)
Grade 75	Reduction factor for seismic shear	⊘ V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	ϕ	-				0.	65			
	Strength reduction factor for shear ³	ϕ	-				0.	60			
	Nominal strength as governed by	N _{sa}	lbf (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)			
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)
Grade 60	Reduction factor for seismic shear	C V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ³	φ	-				0.	65			
	Strength reduction factor for shear ³	φ	-				0.	60			
	Nominal strength as governed by	Nsa	lbf (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (452.0)
ASTM A706	steel strength (for a single anchor)	Vsa	lbf (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (94.0)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
Grade 60	Reduction factor for seismic shear	⊘ V,seis	-	0.70	0.70	0.80	0.80	0.80	0.80	0.80	0.80
	Strength reduction factor for tension ²	ϕ	-				0.	75			
	Strength reduction factor for shear ²	ϕ	-				0.	65			
	Nominal strength as governed by	N _{sa}	lbf (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)	In ad	ccordance w	vith ASTM A	615.
ASTM A615	steel strength (for a single anchor)	V _{sa}	lbf (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A615, Grade 40 bars are furnished only in sizes No. 3 through No. 6			
Grade 40	Reduction factor for seismic shear	C V,seis	-	0.70 0.70 0.80 0.80							
	Strength reduction factor for tension ³	Strength reduction factor for tension³ ϕ - 0.65									
	Strength reduction factor for shear ³	ϕ	-				0.	60			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf.

- 1. Values provided for reinforcing bar material types based on minimum specified strengths and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and Eq. 17.7.1.2(b), ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.
- 2. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to ductile steel elements. In accordance with ACI 318-19 17.10.5.3(a)(vi), ACI 318-14 17.2.3.4.3(a)(vi) or ACI 318-11 D.3.3.4.3(a)6, as applicable, deformed reinforcing bars meeting this specification used as ductile steel elements to resist earthquake effects shall be limited to reinforcing bars satisfying the requirements of ACI 318-19 20.2.2, ACI 318-14 20.2.2.4 and 20.2.2.5 or ACI 318-11 21.1.5.2 (a) and (b), as applicable.
- 3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4. Values correspond to brittle steel elements.

Concrete Breakout Design Information for Threaded Rod and Reinforcing Bars

					Nominal Ro	d Diameter (in	ch) / Reinforc	ing Bar Size		
Design Information	Symbol	Units	3/8 or #3 1/2 or #4 5/8 or #5 3/4 or #6 7/8 or #7 1 or #8 #9 17 (7.1) 24 (10.0) 2-3/8 2-3/4 3-1/8 3-1/2 3-1/2 4 4-1/2 (60) (70) (79) (89) (89) (102) (114) 1 7-1/2 10 12-1/2 15 17-1/2 20 22-1/2 (191) (254) (318) (381) (445) (508) (572) 1 1-7/8 2-1/2 3-1/8 3-3/4 4-3/8 5 5-5/8 (10) (48) (64) (79) (95) (111) (127) (143) 5d where d is nominal outside diameter of the anchor 5d where d is nominal outside diameter of the anchor 1 1-3/4 1-3/4 1-3/4 1-3/4 1-3/4 1-3/4 (45) (45) (45) (70) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1-1/4 or #10
Effectiveness factor for cracked concrete	K _{c,cr}	- (SI)						•		
Effectiveness factor for uncracked concrete	K _{c,uncr}	- (SI)								
Minimum embedment	h _{ef,min}	inch (mm)								5 (127)
Maximum embedment	h _{ef,max}	inch (mm)					—		22-1/2 (572)	25 (635)
Minimum anchor spacing	Smin	inch (mm)	1-7/8 2-1/2 3-1/8 3-3/4 4-3/8 5 5-5/8 6-1/4 (48) (64) (79) (95) (111) (127) (143) (159)							
Minimum edge distance ²	C _{min}	inch (mm)	(48) (64) (79) (95) (111) (127) (143) (159) 5d where d is nominal outside diameter of the anchor							
Minimum edge distance, reduced ² (45% T _{max})	C _{min,red}	inch (mm)		, .				, .		2-3/4 (70)
Minimum member thickness	h _{min}	inch (mm)				h _{ef} -	+ 2d₀ where d	o is hole diam	eter;	
Critical edge distance—splitting		inch			Cao	$_{c}=h_{ef}\cdot(\frac{ au_{uncr}}{1160})$	^{0.4} · [3.1-0.7 h	n lef		
(for uncracked concrete only) ³	Cac	(mm)			Cao	$_{c}=h_{\mathrm{ef}}\cdot(\frac{ au_{\mathrm{uncr}}}{8})$	^{0.4} · [3.1-0.7 h	n lef		
Strength reduction factor for tension, concrete failure modes, Condition B ⁴	φ	-	0.65							
Strength reduction factor for shear, concrete failure modes, Condition B ⁴	φ	-	0.70							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf.

- 1. Additional setting information is described in the installation instructions.
- 2. For installation between the minimum edge distance, c_{min} , and the reduced minimum edge distance, $c_{min,red}$, the maximum torque applied must be reduced (multiplied) by a factor of 0.45.
- 3. τ_{kuncr} need not be taken as greater than: $\tau_{\text{kuncr}} = \frac{\kappa_{\text{uncr}} \cdot \sqrt{h_{\text{el}} \cdot f'_{\text{C}}}}{\pi \cdot d}$ and $\frac{h}{h_{\text{el}}}$ need not be taken as larger than 2.4.

Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pryout governs, as set forth in ACI 318-19 17.5.3,
ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318 (-19 or -14) 5.3 or ACI 318-11
9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the
appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

Bond Strength Design Information for Threaded Rods and Reinforcing Bars

					Nor	Nominal Rod Diameter (inch) / Reinforcing Bar Size							
Design I	nformation	Symbol	Units	3/8 or #3	1/2 or #4	5/8 or #5	3/4 or #6	7/8 or #7	1 or #8	#9	1-1/4 or #10		
Minimum	embedment	h _{ef,min}	inch (mm)	2-3/8 (60)	2-3/4 (70)	3-1/8 (79)	3-1/2 (89)	3-1/2 (89)	4 (102)	4-1/2 (114)	5 (127)		
Maximum	embedment	h _{ef,max}	inch (mm)	7-1/2 (191)	10 (254)	12-1/2 (318)	15 (381)	17-1/2 (445)	20 (508)	22-1/2 (572)	25 (635)		
110°F (43°C) Maximum Long-Term Service Temperature; 140°F	Characteristic bond strength in cracked concrete ^{6,9}	auk,cr	psi (N/mm²)	684 (4.7)	658 (4.5)	632 (4.4)	608 (4.2)	585 (4.0)	562 (3.9)	562 (3.9)	562 (3.9)		
(60°C) Maximum Short-Term Service Temperature ^{3,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{k,uncr}$	psi (N/mm²)	1,444 (10.0)	1,389 (9.6)	1,335 (9.2)	1,283 (8.8)	1,234 (8.5)	1,184 (8.2)	1,184 (8.2)	1,184 (8.2)		
110°F (43°C) Maximum Long-Term Service Temperature; 176°F	Characteristic bond strength in cracked concrete ^{6,9}	$ au_{k,cr}$	psi (N/mm²)	475 (3.3)	457 (3.2)	439 (3.0)	422 (2.9)	406 (2.8)	390 (2.7)	390 (2.7)	390 (2.7)		
(80°C) Maximum Short-Term Service Temperature ^{4,5}	Characteristic bond strength in uncracked concrete ^{6,8}	$ au_{ extsf{k}, ext{uncr}}$	psi (N/mm²)	1,024 (7.1)	985 (6.8)	947 (6.5)	910 (6.3)	875 (6.0)	840 (5.8)	840 (5.8)	840 (5.8)		
	Dry concrete	Anchor Category	-					1					
Permissible	-	$oldsymbol{\phi}_{\! ext{d}}$	-				0.	65					
Conditions ⁷	or		-				2	2					
	Water-filled hole (flooded)	$\phi_{\scriptscriptstyle{WS}},\;\phi_{\scriptscriptstyle{Wf}},$	-				0.	55					
Reduction factor	for seismic tension ⁹	lphaN,seis	-				1	.0					

For SI: 1 inch = 25.4 mm, 1 psi = 0.006894 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

- 1. Bond strength values correspond to a normal-weight concrete compressive strength f'c = 2,500 psi (17.2 MPa). For concrete compressive strength, f'c between 2,500 psi and 8,000 psi (17.2 MPa and 55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c / 2,500)^{0.23} (For SI: (f'c / 17.2)^{0.23}). See Section 4.1.4 of this report for bond strength determination.
- 2. The modification factor for bond strength of adhesive anchors in lightweight concrete shall be taken as given in ACI 318-19 17.2.4.1, or ACI 318-14 17.2.6 where applicable.
- 3. The maximum short-term service temperature may be increased to 162°F (72°C) provided characteristic bond strengths are reduced by 3 percent. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category B.
- 4. Long-term and short-term temperatures meet the requirements of Section 8.5 of ACI 355.4 and Table 8.1, Temperature Category A.
- 5. Short-term base material service temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Long-term base material service temperatures are roughly constant over significant periods of time.
- 6. Characteristic bond strengths are for sustained loads including dead and live loads. Characteristic bond strengths are also applicable to short-term loading.
- 7. Permissible installation conditions include dry concrete, water-saturated concrete, and water-filled holes. Water-filled holes include applications in dry or water-saturated concrete where the drilled holes contain standing water at the time of anchor installation.
- 8. Bond strength values for uncracked concrete are applicable for structures assigned to Seismic Design Categories A and B only.
- For structures assigned to Seismic Design Categories C, D, E or F, the tabulated bond strength values for cracked concrete do not require an additional reduction factor applied for seismic tension ($\alpha_{N,seis} = 1.0$), where seismic design is applicable.

DESIGN STRENGTH TABLES (SD)

Tension and Shear Design Strength Installed in Uncracked Concrete (Bond or Concrete Strength)
Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition
110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11}

					Minim	um Concrete C	compressive St	trength			
Nominal	Embed.	f'c = 2,5	500 (psi)	f'c = 3,0	000 (psi)	f'c = 4,0	000 (psi)	f'c = 6,0	000 (psi)	f'c = 8,0	00 (psi)
Rod/Rebar Size (in. or #)	Depth hef (in.)	ΦN⇔ or ΦN₃ Tension (lbs.)	ψV₀ or ψVℴ Shear (lbs.)	ψN⇔ or ψN₂ Tension (lbs.)	ψV₀ or ψVℴ Shear (lbs.)	ΦN⇔ or ΦNa Tension (lbs.)	ψV₀ or ψVℴ Shear (lbs.)	ψN⇔ or ψN₃ Tension (lbs.)	φV₀ or φVℴ Shear (lbs.)	ψN₅ or ψN₂ Tension (lbs.)	φV₀ or φVℴ Shear (lbs.)
	2-3/8	2,625	2,490	2,740	2,770	2,925	3,150	3,210	3,460	3,430	3,695
0/0 07 //0	3	3,315	3,700	3,460	4,120	3,695	4,885	4,055	6,210	4,335	7,365
3/8 or #3	4-1/2	4,975	6,755	5,190	7,525	5,545	8,920	6,085	11,340	6,500	13,445
	7-1/2	8,295	14,375	8,650	16,010	9,240	18,985	10,145	21,845	10,835	23,340
	2-3/4	3,555	3,305	3,895	3,755	4,345	4,525	4,770	5,755	5,095	6,825
1/0 0 1/4	4	5,675	6,450	5,915	7,185	6,320	8,520	6,940	10,830	7,415	12,840
1/2 or #4	6	8,510	11,750	8,875	13,085	9,480	15,515	10,405	19,725	11,120	23,390
Ī	10	14,180	25,020	14,790	27,875	15,800	33,050	17,345	37,360	18,530	39,915
	3-1/8	4,310	4,120	4,720	4,680	5,450	5,720	6,430	7,525	6,835	8,920
5/8 or #5	5	8,520	9,895	8,885	11,020	9,490	13,065	10,420	16,610	11,130	19,695
3/6 01 #3	7-1/2	12,780	18,020	13,325	20,070	14,235	23,800	15,630	30,255	16,700	35,870
Ī	12-1/2	21,300	38,395	22,210	42,775	23,730	50,715	26,050	56,105	27,830	59,940
	3-1/2	5,105	5,015	5,595	5,700	6,460	6,970	7,635	9,255	8,265	11,245
0/4 == 110	6	11,465	13,595	12,295	15,315	13,135	18,160	14,420	23,090	15,405	27,375
3/4 or #6	9	17,685	25,045	18,440	27,900	19,705	33,080	21,630	42,050	23,110	49,775
Ī	15	29,475	53,355	30,735	59,435	32,840	70,470	36,050	77,645	38,515	82,955
	3-1/2	5,105	4,930	5,595	5,605	6,460	6,855	7,350	9,100	7,975	11,130
7/0 04 117	7	14,445	16,605	15,825	18,865	17,195	22,525	18,875	28,635	20,170	33,950
7/8 or #7	10-1/2	23,150	31,060	24,145	34,595	25,795	41,020	28,315	52,150	30,250	61,830
ĺ	17-1/2	38,585	66,175	40,240	73,715	42,990	87,400	47,195	101,645	50,420	108,600
	4	6,240	6,115	6,835	6,945	7,895	8,495	9,190	11,280	9,980	13,800
1 05 40	8	17,650	19,750	19,335	22,435	21,550	27,055	23,655	34,395	25,275	40,785
1 or #8	12	29,015	37,310	30,255	41,560	32,325	49,280	35,485	62,650	37,910	74,280
Ī	20	48,355	79,500	50,425	88,560	53,875	105,005	59,140	127,380	63,185	136,095
	4-1/2	7,445	7,110	8,155	8,080	9,420	9,880	11,335	13,125	12,300	16,055
#9	9	21,060	23,055	23,070	26,190	26,640	32,035	29,940	41,110	31,990	48,745
#9	13-1/2	36,720	44,600	38,290	49,680	40,910	58,905	44,910	74,885	47,985	88,790
	22-1/2	61,200	94,995	63,820	105,825	68,185	125,475	74,850	159,515	79,970	172,245
	5	8,720	8,170	9,555	9,285	11,030	11,355	13,510	15,085	15,190	18,450
1-1/4	10	24,665	26,380	27,020	29,975	31,200	36,660	36,965	48,050	39,490	56,970
1-1/4	15	45,315	52,110	47,275	58,060	50,510	68,835	55,445	87,515	59,240	103,760
	25	75,555	111,065	78,790	123,720	84,180	146,695	92,410	186,490	98,730	212,650
	5	8,720	8,160	9,555	9,270	11,030	11,335	13,510	15,060	15,020	18,420
#10	10	24,665	26,430	27,020	30,025	31,200	36,725	36,965	48,135	39,490	57,070
#10	15	45,315	52,205	47,275	58,165	50,510	68,965	55,445	87,675	59,240	103,955
Ì	25	75,555	111,225	78,790	123,905	84,180	146,910	92,410	186,765	98,730	212,650

^{□ -} Concrete Breakout Strength □ - Bond Strength/Pryout Strength

- 1. Tabular values are provided for illustration and are applicable for single anchors installed in uncracked normal-weight concrete with minimum slab thickness,
 - $h_a = h_{min}$, and with the following conditions:
 - C_{a1} is greater than or equal to the critical edge distance, C_{ac} C_{a2} is greater than or equal to 1.5 times C_{a1} .
- 2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACl 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.
- 4. Strength reduction factors (ϕ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.
- 5. Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2, or ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 or -14) Ch. 17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3576.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.
- 10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.
- 11. For other installation conditions such as water-saturated concrete or water-filled holes, see the associated strength reduction factors (\$\phi\$) for bond strength in the determination of controlling design strength values, as applicable.

Tension and Shear Design Strength Installed in Cracked Concrete (Bond or Concrete Strength) Drilled with a Hammer-Drill and Carbide Bit in a Dry Hole Condition 110°F (43°C) Maximum Long-Term Service Temperature;

140°F (60°C) Maximum Short-Term Service Temperature^{1,2,3,4,5,6,7,8,9,10,11,12}

_	<u> </u>				Minim	um Concrete C	Compressive St	rength			
Nominal	Embed.	f'c = 2,	500 (psi)	f'c = 3,0	000 (psi)		000 (psi)		000 (psi)	f'c = 8,0	000 (psi)
Rod/Rebar Size (in. or #)	Depth hef (in.)	φΝ _{cb} or φΝ _a Tension (lbs.)	ψV₀₀ or ψV∘ρ Shear (lbs.)	φΝ _{cb} or φΝa Tension (lbs.)	φV _{cb} or φV _{cp} Shear (lbs.)	φΝ _{cb} or φΝa Tension (lbs.)	ψV₀₀ or ψVℴ₀ Shear (lbs.)	φΝ _{cb} or φΝa Tension (lbs.)	ψV₀ or ψV∘ Shear (lbs.)	φΝ _{cb} or φΝa Tension (lbs.)	φ V cb or φ V cp Shear (lbs.)
	2-3/8	1,245	1,340	1,295	1,395	1,385	1,495	1,520	1,640	1,625	1,750
3/8 or #3	3	1,570	2,645	1,640	2,945	1,750	3,490	1,920	4,140	2,055	4,425
	4-1/2	2,355	4,825	2,460	5,295	2,625	5,655	2,885	6,210	3,080	6,635
	7-1/2	3,930	8,460	4,095	8,825	4,375	9,425	4,805	10,350	5,135	11,055
	2-3/4	1,850	2,360	1,925	2,680	2,060	3,235	2,260	4,110	2,415	4,875
1/0 !/4	4	2,685	4,605	2,800	5,130	2,995	6,085	3,285	7,080	3,510	7,565
1/2 or #4	6	4,030	8,390	4,205	9,055	4,490	9,675	4,930	10,620	5,265	11,345
Ì	10	6,720	14,470	7,005	15,090	7,485	16,120	8,215	17,700	8,780	18,910
	3-1/8	2,365	2,940	2,500	3,340	2,720	4,085	3,045	5,375	3,235	6,375
E/O !!E	5	4,035	7,065	4,205	7,870	4,495	9,335	4,935	10,625	5,270	11,350
5/8 or #5	7-1/2	6,050	12,870	6,310	13,590	6,740	14,515	7,400	15,935	7,905	17,025
Ì	12-1/2	10,085	21,715	10,515	22,645	11,235	24,195	12,330	26,560	13,175	28,375
	3-1/2	2,805	3,580	2,955	4,070	3,215	4,980	3,620	6,610	3,920	8,035
0/4 110	6	5,585	9,710	5,825	10,940	6,225	12,970	6,835	14,720	7,300	15,725
3/4 or #6	9	8,380	17,890	8,740	18,825	9,335	20,110	10,250	22,075	10,950	23,585
	15	13,970	30,085	14,565	31,370	15,560	33,520	17,085	36,795	18,250	39,310
	3-1/2	2,720	3,525	2,860	4,000	3,105	4,895	3,485	6,500	3,780	7,950
7/0 117	7	7,315	11,860	7,630	13,475	8,150	16,090	8,950	19,275	9,560	20,595
7/8 or #7	10-1/2	10,975	22,185	11,445	24,650	12,230	26,340	13,425	28,910	14,340	30,890
Ì	17-1/2	18,290	39,400	19,075	41,085	20,380	43,895	22,370	48,185	23,905	51,485
	4	3,405	4,365	3,585	4,960	3,890	6,065	4,365	8,060	4,735	9,855
4 110	8	9,180	14,105	9,575	16,025	10,230	19,325	11,230	24,185	11,995	25,840
1 or #8	12	13,770	26,650	14,360	29,685	15,345	33,050	16,845	36,280	17,995	38,760
Ì	20	22,950	49,435	23,935	51,555	25,575	55,080	28,070	60,465	29,995	64,600
	4-1/2	4,205	5,080	4,425	5,770	4,800	7,060	5,380	9,375	5,840	11,465
,,,	9	11,620	16,465	12,115	18,710	12,945	22,880	14,210	29,365	15,185	32,705
#9	13-1/2	17,430	31,855	18,175	35,485	19,420	41,825	21,315	45,915	22,775	49,055
	22-1/2	29,050	62,570	30,295	65,245	32,365	69,710	35,530	76,525	37,960	81,760
	5	5,190	5,835	5,465	6,630	5,925	8,110	6,645	10,775	7,210	13,175
4.4/4	10	14,345	18,845	14,960	21,410	15,985	26,185	17,545	34,320	18,745	40,375
1-1/4	15	21,520	37,220	22,440	41,470	23,975	49,170	26,320	56,685	28,120	60,560
Ì	25	35,865	77,245	37,400	80,550	39,955	86,060	43,865	94,475	46,865	100,935
	5	5,135	5,830	5,405	6,620	5,860	8,100	6,570	10,755	7,130	13,155
,,,,	10	14,345	18,880	14,960	21,445	15,985	26,230	17,545	34,380	18,745	40,375
#10	15	21,520	37,290	22,440	41,545	23,975	49,260	26,320	56,685	28,120	60,560
	25	35,865	77,245	37,400	80,550	39,955	86,060	43,865	94,475	46,865	100,935
- Concrete Br	eakout Strength		ngth/Pryout Strer	igth							

- Concrete Breakout Strength ___- Bond Strength/Pryout Strength
- Tabular values are provided for illustration and are applicable for single anchors installed in cracked normal-weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:
 - Ca1 is greater than or equal to the critical edge distance, Cac
 - Ca2 is greater than or equal to 1.5 times Ca1.
- 2. Calculations were performed according to ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308. The load level corresponding to the failure mode listed [Concrete breakout strength, bond strength/ pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod or rebar size and type, the lowest load level controls.
- 3. Strength reduction factors (ϕ) for concrete breakout strength are based on ACI 318 (-19 or -14) 5.3 for load combinations. Condition B was assumed.
- Strength reduction factors (φ) for bond strength are determined from reliability testing and qualification in accordance with ICC-ES AC308 and are tabulated in this product information and in ESR-3576.
- Tabular values are permitted for static loads only, seismic loading is not considered with these tables. Periodic special inspection must be performed where required by code, see ESR-3576 for applicable information.
- 6. For anchors subjected to tension resulting from sustained loading a supplemental check must be performed according to ACI 318 -19 17.5.2.2 or ACI 318-14 17.3.1.2.
- 7. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Ch.17.
- 8. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths, please see ACI 318 (-19 or -14) Ch. 17, ICC-ES AC308 and information included in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 or -14) Ch. 17 and ICC-ES AC308 and ESR-3576.
- 9. Long term concrete temperatures are roughly constant over significant periods of time. Short-term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.
- 10. The tabulated design strengths may be converted to allowable stress design values. Divide by conversion factor calculated as a weighted average of the load factors for the controlling load combination.
- 11. For seismic design in accordance with ACI 318, the tabulated tension design strengths in cracked concrete for concrete breakout and bond strength must be multiplied by a factor of 0.75. In the determination of the tension design strength values in cracked concrete, the bond strength does not require an additional reduction factor applied for seismic tension (CMs.ees = 1.0), where seismic feesion is annihizable.
- 12. For other installation conditions such as water-saturated concrete or water-filled holes, see the associated strength reduction factors (\$\phi\$) for bond strength in the determination of controlling design strength values, as applicable.

Tension Design of Steel Elements (Steel Strength)^{1,2}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and ISO 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØN₅a Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)	ØNsa Tension (lbs.)
3/8 or #3	3,370	4,360	7,265	6,975	3,655	5,040	3,315	5,525	7,150	6,435	6,600	4,290
1/2 or #4	6,175	7,980	13,300	12,770	6,690	9,225	6,070	10,110	13,000	11,700	12,000	7,800
5/8 or #5	9,835	12,715	21,190	20,340	10,650	14,690	9,660	16,105	20,150	18,135	18,600	12,090
3/4 or #6	14,550	18,815	31,360	30,105	15,765	18,480	14,300	23,830	28,600	25,740	26,400	17,160
7/8 or #7	20,085	25,970	43,285	41,930	21,760	25,510	19,735	32,895	39,000	35,100	36,000	
1 or #8	26,350	34,070	56,785	54,515	28,545	33,465	25,895	43,160	51,350	46,215	47,400	
#9	-		-		-	-	-	-	65,000	58,500	60,000	
1-1/4 or #10	42,160	54,510	90,850	76,315	-	53,540	41,430	69,050	82,550	74,295	76,200	-

- Steel Strength

- 1. Steel tensile design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, ϕ Nsa = ϕ Ase,N futa.
- 2. The tabulated steel design strength in tension must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.

Shear Design of Steel Elements (Steel Strength)^{1,2,3}

	Steel Elements - Threaded Rod and Reinforcing Bar											
Nominal Rod/Rebar Size (in. or No.)	ASTM A36 and ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM A193 Grade B7 and ASTM F1554 Grade 105	ASTM A449	ASTM F568M Class 5.8 and ISO 898-1 Class 5.8	ASTM F593 CW Stainless (Types 304 and 316)	ASTM A193 Grade B8/B8M, Class 1 Stainless (Types 304 and 316)	ASTM A193 Grade B8/ B8M2, Class 2B Stainless (Types 304 and 316)	ASTM A615 Grade 75 Rebar	ASTM A615 Grade 60 Rebar	ASTM A706 Grade 60 Rebar	ASTM A615 Grade 40 Rebar
	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)	ØV₅a Shear (lbs.)	ØVsa Shear (lbs.)	ØVsa Shear (lbs.)
3/8 or #3	1,755	2,265	3,775	3,625	2,025	2,790	1,725	2,870	3,960	3,565	3,430	2,375
1/2 or #4	3,210	4,150	6,915	6,640	3,705	5,110	3,155	5,255	7,200	6,480	6,240	4,320
5/8 or #5	5,115	6,610	11,020	10,575	5,900	8,135	5,025	8,375	11,160	10,045	9,670	6,695
3/4 or #6	7,565	9,785	16,305	15,655	8,730	10,235	7,435	12,390	15,840	14,255	13,730	9,505
7/8 or #7	10,445	13,505	22,505	21,805	12,050	14,130	10,265	17,105	21,600	19,440	18,720	-
1 or #8	13,700	17,715	29,525	28,345	15,810	18,535	13,465	22,445	28,440	25,595	24,650	•
#9		-	-		-	-	-	-	36,000	32,400	31,200	-
1-1/4 or #10	21,920	28,345	47,240	39,685	-	29,655	21,545	35,905	45,720	41,150	39,625	-

- Steel Strength

- 1. Steel shear design strength according to ACI 318 (-19 or -14) Ch. 17 and ACI 318 Appendix D, $\phi V_{\text{sa}} = \phi \bullet 0.60 \bullet A_{\text{se,V}} \bullet f_{\text{luta.}}$
- 2. The tabulated steel design strength in shear must be checked against the bond strength/concrete capacity design strength to determine the controlling failure mode, the lowest load level controls.
- 3. In the determination of the shear design strength values in cracked concrete, the steel strength requires an additional reduction factor applied for seismic shear (CO_{Losis}), where seismic design is applicable.

INSTALLATION INSTRUCTIONS (SOLID BASE MATERIALS)

DRILLING

- 1- Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a carbide drill bit to the size and embedment required by the selected steel hardware element (reference installation specifications for threaded rod and reinforcing bar). The tolerances of the carbide drill bits, including hollow bits, must meet ANSI Standard B212.15.
- Precaution: Use suitable eye and skin protection. Avoid inhalation of dust during drilling and/or removal.
- Note! In case of standing water in the drilled hole (flooded hole condition), all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.

Drilling in dry base materials is recommended when using hollow drill bits (vacuum must be on).

GO TO STEP 3 FOR HOLES DRILLED WITH DUSTX+" EXTRACTION SYSTEM (NO FURTHER HOLE CLEANING IS REQUIRED). OTHERWISE GO TO STEP 2A FOR HOLE CLEANING INSTRUCTIONS.

HOLE CLEANING (BLOW 2X, BRUSH 2X, BLOW 2X)

- 2a- Starting from the bottom or back of the drilled anchor hole, blow the hole clean a minimum of two times (2x).
- Use a compressed air nozzle (min. 90 psi) for all sizes of anchor rod and reinforcing bar (rebar).

2b- Determine wire brush diameter (see installation specifications) for the drilled hole and attach the brush with adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of two times (2x). A brush extension (supplied by DEWALT) must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be checked periodically during use. The brush should resist insertion into the drilled hole, if it does not come into contact with the sides of the drilled hole, the brush is too small and must be replaced.

- **2c-** Repeat Step 2a again by blowing the hole clean a minimum of two times (2x).
- When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.

PREPARING

- 3- Check adhesive expiration date on cartridge label. Do not use expired product. Review Safety Data Sheet (SDS) before use. Cartridge temperature must be between 50°F 104°F (10°C 40°C) when in use; for overhead applications cartridge temperature must be between 50°F 90°F (10°C 30°C). Review published working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of the base material temperature, see published gel and curing times.
- Attach a supplied mixing nozzle to the cartridge. Unless otherwise noted do not modify the mixer in any way and make sure the mixing element
 is inside the nozzle. Load the cartridge into the correct dispensing tool.
- Note: Unless otherwise noted use a new mixing nozzle with new cartridge of adhesive and also for all work interruptions exceeding the
 published gel (working) time of the adhesive.

4- Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.

- 5- Adhesives must be properly mixed to achieve published properties. For new cartridges and nozzles, prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent GRAY color.
- Review and note the published working and cure times (reference gel time and curing time table) prior to injection of the mixed adhesive into the cleaned anchor hole.

INSTALLATION

- 6- Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. A plastic extension tube (Cat# 08281-PWR or 08297-PWR) or equivalent approved by DEWALT must be used with the mixing nozzle if the bottom or back of the anchor hole is not reached with the mixing nozzle only.
- Note! Piston plugs (see adhesive piston plug table) must be used with and attached to the mixing nozzle and extension tube for horizontal
 installations where embedment is greater than 8 inches and where the drilled hole diameter is larger than 5/8-inch. Insert piston plug to the
 back of the drilled hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled
 hole by the adhesive pressure.

Attention! Do not install anchors overhead without proper training and installation hardware provided by the DEWALT. Contact DEWALT for details prior to use.

7- The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.

8- Ensure that the anchor element is installed to the specific embedment depth. Adhesive must completely fill the annular gap at the concrete surface. Following installation of the anchor element, remove excess adhesive. Protect the anchor element threads from fouling with adhesive. For all installations the anchor element must be restrained from movement throughout the specified curing period (as necessary) through the use of temporary wedges, external supports, or other methods. Minor adjustment to the position of the anchor element may be performed during the gel time only.

CURING AND LOADING

- 9- Allow the adhesive anchor to cure to the specified full curing time prior to applying any load (reference gel time and curing time table).
- . Do not disturb, torque or load the anchor until it is fully cured.

- 10- After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque (reference gel time and curing table) by using a calibrated torque wrench.
- Note: Take care not to exceed the maximum torque for the selected anchor.

REFERENCE INSTALLATION TABLES

Gel (working) Time and Curing Table^{1,2}

Temperature of base material		Gel (working) time	Full curing time
°F	℃	uei (working) unie	run curing unic
50	10	90 minutes	24 hours
68	20	25 minutes	8 hours
86	30	20 minutes	6 hours
95	35	15 minutes	6 hours
104	40	12 minutes	4 hours

^{1.} Linear interpolation for intermediate base material temperature is possible.

Wire Brush Selection Table for Pure50+ Adhesive Anchors^{1,2,3}

ANSI Drill Bit Diameter' (inch)	Nominal Wire Brush Size (inch)	Brush Length (inches)	Steel Wire Brush ^{2,3} (Cat. #)	Blowout Tool
7/16	7/16	7	08284-PWR	
9/16	9/16	7	08285-PWR	
5/8	5/8	7	08275-PWR	
11/16	44/40	9	08286-PWR]
3/4	11/16	9	08278-PWR	Compressed air nozzle only,
7/8	7/8	9	08287-PWR	Cat #08292-PWR (min. 90 psi)
1	1	11	08288-PWR	(ΠΙΙΙ. 90 μοι)
1-1/8	1-1/8	11	08289-PWR	
1-3/8	1-3/8	11	08290-PWR	
1-1/2	1-1/2	11	08291-PWR	1

- 1. An SDS-plus adaptor (Cat. #08283-PWR) or Jacobs chuck style adaptor (Cat. #08296-PWR) is required to attach a steel wire brush to the drill tool.
- 2. A brush extension (Cat. #08282-PWR) must be used with a steel wire brush for holes drilled deeper than the listed brush length.
- 3. If the DEWALT DustX+ extraction system is used to automatically clean the holes during drilling, standard hole cleaning (i.e. brushing and removing dust/debris following drilling) is not required.

Piston Plug Selection Table for Adhesive Anchors^{1,2,3,4}

Drill Bit Diameter (inch)	Plug Size (inch)	Piston Plug (Cat. #)	Premium Piston Plug (Cat. #)
11/16	11/16	08258-PWR	PFC1691515
3/4	3/4	08259-PWR	PFC1691520
7/8	7/8	08300-PWR	PFC1691530
1	1	08301-PWR	PFC1691540
1-1/8	1-1/8	08303-PWR	PFC1691550
1-1/4	1-1/4	08307-PWR	PFC1691555
1-3/8	1-3/8	08305-PWR	PFC1691560
1-1/2	1-1/2	08309-PWR	PFC1691570
1-3/4	1-3/4	-	PFC1691580
2	2	-	PFC1691590
2-3/16	2-3/16	-	PFC1691600

- $1. \ \ \text{All overhead installations require the use of piston plugs where one is tabulated together with the anchor size.}$
- 2. All horizontal installations require the use of piston plugs where the embedment depth is greater than 8 inches and the drill bit size is larger than 5/8-inch.
- 3. The use of piston plugs is also recommended for underwater installations where one is tabulated together with the anchor size.
- 4. A flexible plastic extension tube (Cat. #08281-PWR or #08297-PWR) or equivalent approved by DEWALT must be used with piston plugs.

^{2.} Cartridge adhesive temperature must be between 50°F - 110°F (10°C - 43°C) when in use; for overhead applications cartridge adhesive temperature must be between 50°F - 90°F (10°C - 32°C) when in use. For best adhesive dispensing experience, suggested minimum cartridge adhesive temperature is 68°F (20°C) when in use

ORDERING INFORMATION

Pure50+ Cartridges

Cat. No.	Description	Pack Qty.	Pallet Qty			
08600-PWR	12	432				
08605-PWR	08605-PWR Pure50+ 20.5 fl. oz. cartridge					
08651-PWR	Pure50+ 50.5 fl. oz. cartridge	5	135			
A Pure50+ mixir	A Pure50+ mixing nozzle is packaged with each cartridge.					
Pure50+ mixing	nozzles must be used to ensure complete and proper mixing of the adhesive.					

Cartridge System Mixing Nozzles

Cat. No.	Cat. No. Description			
PFC1641600	Mixing nozzle (with 8" extension) for Pure50+ Quick-Shot	1	12	
08294-PWR	Mixing nozzle (with 8" extension)	2	24	
08609-PWR	High flow mixing nozzle (with 8" extension)	2	24	
08281-PWR	Mixing nozzle extension, 8" long	2	24	
08297-PWR	Mixing nozzle extension, 20" long	1	12	

Dispensing Tools for Injection Adhesive

nishensin	Dispensing roots for injection Adhesive							
Cat. No.	Cat. No. Description							
08437-PWR	Manual caulking gun for Quick-Shot	1	12					
DCE560D1	Quik-Shot 20v Battery powered dispensing tool	1	-					
08409-PWR	20.5 fl. oz. Standard metal manual tool	1	10					
DCE591D1	20.5 fl. oz. 20v Battery powered dispensing tool	1	-					
08459-PWR	20.5 fl. oz. Pneumatic tool	1	-					
08438-PWR	50.5 fl. oz. Pneumatic tool	1	-					
-	•	•	•					

Hole Cleaning Tools and Accessories

Cat. No.	Description	Pack Qty.
08284-PWR	Wire brush for 7/16" or 1/2" ANSI hole, 7" length	1
08285-PWR	Wire brush for 9/16" ANSI hole, 7" length	1
08275-PWR	Wire brush for 5/8" ANSI hole, 7" length	1
08286-PWR	Wire brush for 11/16" ANSI hole, 9" length	1
08278-PWR	Wire brush for 3/4" ANSI hole, 9" length	1
08287-PWR	Wire brush for 7/8" ANSI hole, 9" length	1
08288-PWR	Wire brush for 1" ANSI hole, 11" length	1
08289-PWR	Wire brush for 1-1/8" ANSI hole, 11" length	1
08276-PWR	Wire brush for 1-1/4" ANSI hole, 11" length	1
08290-PWR	Wire brush for 1-3/8" h ANSI ole, 11" length	1
08291-PWR	Wire brush for 1-1/2" ANSI hole, 11" length	1
08273-PWR	Wire brush for 1-5/8" ANSI hole, 11" length	1
08299-PWR	Wire brush for 1-3/4" ANSI hole, 11" length	1
08271-PWR	Wire brush for 2" ANSI hole, 11" length	1
08272-PWR	Wire brush for 2-3/16" ANSI hole, 11" length	1
08283-PWR	SDS-plus adapter for steel brushes	1
08296-PWR	Standard drill adapter for steel brushes (e.g. Jacobs Chuck)	1
08282-PWR	Steel brush extension, 12" length	1
08292-PWR	Air compressor nozzle with extension, 18" length	1

Piston Plugs for Adhesive Anchors

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.
08258-PWR	11/16" Plug	11/16"	10
08259-PWR	3/4" Plug	3/4"	10
08300-PWR	7/8" Plug	7/8"	10
08301-PWR	1" Plug	1"	10
08303-PWR	1-1/8" Plug	1-1/8"	10
08305-PWR	1-3/8" Plug	1-3/8"	10
08309-PWR	1-1/2" Plug	1-1/2"	10

Premium Piston Plugs

Cat. No.	Description	ANSI Drill Bit Dia.	Pack Qty.
PFC1691510	5/8" Plug	5/8"	1
PFC1691515	11/16" Plug	11/16"	1
PFC1691520	3/4" Plug	3/4"	1
PFC1691530	7/8" Plug	7/8"	1
PFC1691540	1" Plug	1"	1
PFC1691550	1-1/8" Plug	1-1/8"	1
PFC1691555	1-1/4" Plug	1-1/4"	1
PFC1691560	1-3/8" Plug	1-3/8"	1
PFC1691570	1-1/2" Plug	1-1/2"	1
PFC1691580	1-3/4" Plug	1-3/4"	1
PFC1691590	2" Plug	2"	1
PFC1691600	2-3/16" Plug	2-3/16"	1

SDS Max 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Diameter Usable Length	
DW5806	5/8"	8"	13-1/2"
DW5809	5/8"	16"	21-1/2"
DW5807	5/8"	31"	36"
DW5808	11/16"	16"	21-1/2"
DW5810	3/4"	8"	13-1/2"
DW5812	3/4"	16"	21-1/2"
DW5813	3/4"	31"	36"
DW5814	13/16"	16"	21-1/2"
DW5815	7/8"	8"	13-1/2"
DW5816	7/8"	16"	21-1/2"
DW5851	7/8"	31"	36"
DW5817	27/32"	16"	21-1/2"
DW5818	1"	8"	13-1/2"
DW5819	1"	16"	22-1/2"
DW5852	1"	24"	29"
DW5820	1"	31"	36"
DW5821	1-1/8"	10"	15"
DW5822	1-1/8"	18"	22-1/2"
DW5853	1-1/8"	24"	29"
DW5854	1-1/8"	31"	36"
DW5824	1-1/4"	10" 15"	
DW5825	1-1/4"	18"	22-1/2"

Dust Extraction

Cat. No.	Description		
DWV012	10 Gallon Wet/Dry Hepa/Rrp Dust Extractor DWV9402 Fleece bag (5 pack) for DEWALT dust extractors DWV9316 Replacement Anti-Static Hose DWV9320 Replacement HEPA Filter Set (Type 1)		
DWH050K	Dust Extraction with two interchangeable drilling heads		
DCB1800B	1800 Watt Portable Power Station & Parallel Battery Charger Bare Unit		

SDS+ Full Head Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length
DW5502	3/16"	2"	4-1/2"
DW5503	3/16"	4"	6-1/2"
DW5504	3/16"	5"	8-1/2"
DW5506	3/16"	10"	12"
DW5512	7/32"	8"	10"
DW5517	1/4"	4"	6"
DW5518	1/4"	6"	8-1/2"
DW55200	1/4"	10"	12"
DW5521	1/4"	12"	14"
DW5524	5/16"	4"	6"
DW5526	5916"	10"	12"
DW5527	3/8"	4"	6-1/2"
DW5529	3/8"	8"	10"
DW55300	3/8"	10"	12"
DW5531	3/8"	16"	18"
DW5537	1/2"	4"	6"
DW5538	1/2"	8"	10-1/2"
DW5539	1/2"	10"	12"
DW5540	1/2"	16"	18"

SDS+ 4-Cutter Carbide Drill Bits

Cat. No.	Diameter	Usable Length	Overall Length	
DW5471	5/8"	8"	10"	
DW5472	5/8"	16"	18"	
DW5474	3/4"	8"	10"	
DW5475	3/4"	16"	18"	
DW5477	7/8"	8"	10"	
DW5478	7/8"	16"	18"	
DW5479	1"	8"	10"	
DW5480	1"	16"	18"	
DW5481	1-1/8"	8"	10"	
DW5482	1-1/8"	6"	18"	

Hollow Drill Bits

Hollow Dilli Dits					
Shank	Cat. No.	Diameter	Overall Length	Usable Length	Recommended Hammer
SDS+	DWA54012	1/2"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54916	9/16"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54058	5/8"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA54034	3/4"	14-1/2"	9-3/4"	DCH133 / DCH273 / DCH293
	DWA58058	5/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58958	5/8"	47-1/4"	39-3/8"	DCH481 / D25603K
SDS Max	DWA58116	11/16"	24-3/4"	15-3/4"	DCH481 / D25603K
	DWA58034	3/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58934	3/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58078	7/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58001	1"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58901	1"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58118	1-1/8"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58918	1-1/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58115	1-1/4"	23-5/8"	15-3/4"	DCH481 / D25603K
	DWA58114	1-1/4"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58138	1-3/8"	47-1/4"	39-3/8"	DCH481 / D25603K
	DWA58112	1-1/2"	47-1/4"	39-3/8"	DCH481 / D25603K

