DEWALT. ANCHORS & FASTENERS

GENERAL INFORMATION

SNAKE+®

Internally Threaded Screw Anchor

PRODUCT DESCRIPTION

The Snake+ anchor is an internally threaded, self-tapping screw anchor designed for performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, sand-lightweight concrete and concrete over steel deck. The Snake+ screw anchor is installed into a drilled hole with a power tool and a Snake+ setting tool. After installation a steel element is threaded into the anchor body.

GENERAL APPLICATIONS AND USES

- Suspending conduit, cable trays and strut
- Interior applications/low level corrosion environment
- Tension zone areas

- Pipe supports
- Seismic and wind loading applications
- Fire sprinklers
- Suspended lighting

FEATURE AND BENEFITS

- + Cracked concrete approved alternative to a dropin anchor
- + Designed for use in holes drilled with standard ANSI carbide drill bits
- + Anchor design allows for shallow embedment and mechanically interlocks with base material
- + Internally threaded anchor for easy adjustment and removability of threaded rod or bolt
- + Fast anchor installation with a powered impact wrench
- + Hammer not used for installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-2272 for concrete. Code compliant with the 2015 IBC, 2015 IRC, 2012 IBC, 2012 IRC, 2009 IBC, 2009 IRC, 2006 IBC, and 2006 IRC.
- Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318-14 Chapter 17 or ACI 318-11/08 (Appendix D)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchor)
- Evaluated and qualified by an accredited independent testing laboratory for reliability against brittle failure, e.g. hydrogen embrittlement
- Evaluated and qualified by an accredited independent testing laboratory for supplemental recognition in redundant fastening applications
- FM Global (Factory Mutual) File No. 3038104 (see report for sizes)
 www.approvalguide.com Pipe hanger components for automatic sprinkler systems

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors and 05 05 09 - Post-Installed Concrete Anchors. Internally threaded anchors shall be Snake+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor Body	Case hardened carbon steel
Plating	Zinc plating according to ASTM B633, SC1, Type III (Fe/Zn 5) Minimum plating requirements for Mild Service Condition

SECTION CONTENTS

General Information	1
Material Specifications	1
Installation Instructions	2
Strength Design (SD)	3
Performance Data	4
Redundant Fastening	8
Ordering Information	٥

SNAKE+

INTERNAL THREAD VERSION

Unified coarse thread (UNC)

ANCHOR MATERIALS

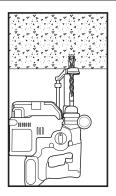
Zinc plated carbon steel body

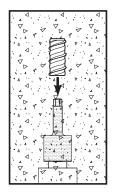
ANCHOR SIZE RANGE (TYP.)

• 1/4", 3/8" and 1/2" diameters

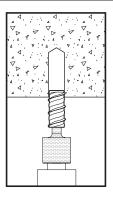
SUITABLE BASE MATERIALS

- Normal-weight concrete
- · Sand-lightweight concrete
- Concrete over steel deck

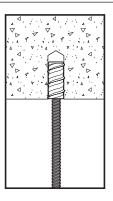




INSTALLATION INSTRUCTIONS

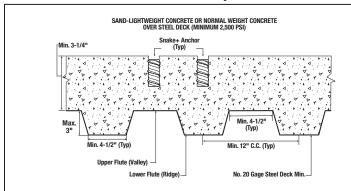

Step 1

Using the proper drill bit size, drill a hole into the base material to the required depth (e.g. dust extractor, hollow bit). The tolerances of the carbide drill bit used should meet the requirements of ANSI Standard B212.15.

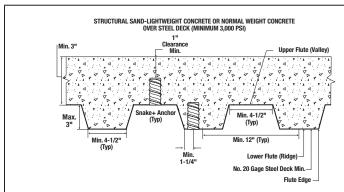

Step 2

Select a powered impact wrench that does not exceed the maximum torque, Tscrew, for the selected anchor diameter. Attach the Snake+ setting tool supplied by DEWALT to the impact wrench. Mount the anchor onto the setting tool.

Step 3


Drive the anchor into the hole until the shoulder of the Snake+ setting tool comes into contact with the surface of the base material. Do not spin the setting tool off the anchor to disengage.

Step 4


Insert threaded rod or a bolt into the Snake+, taking care not to exceed the maximum specified tightening torque of the steel insert element, T_{max}. Minimum thread engagement should be at least one anchor diameter.

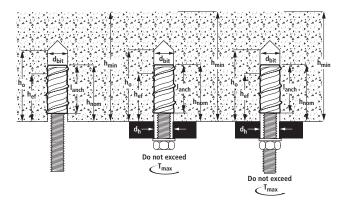
Installation Detail for Snake+ in the Topside of Concrete-Filled Steel Deck floor and Roof Assemblies¹

 3/8-inch diameter anchors may be placed in the topside of steel deck profiles provided the minimum topping thickness, minimum spacing distance and minimum edge distance are satisfied as given in the installation information table.

Installation Detail for Snake+ Installed in the Soffit of Concrete over Steel Deck floor and Roof Assemblies'

Anchors may be placed in the upper flute or lower flute of the steel deck
profiles provided in minimum hole clearance is satisfied. Anchors in
the lower flute may be installed with a maximum 1-inch offset in either
direction from the center of the flute. The offset distance may be increased
proportionally for profiles with lower flute widths greater
than those shown provided the minimum lower flute edge distance
is also satisfied.

STRENGTH DESIGN (SD)


Installation Information for Snake+ Screw Anchor for Single Point Applications¹

Anchor Property/			Nominal Anch	Nominal Anchor Size / Threaded Coupler Diameter (inch)			
Setting Information	Notation	Units	1/4	3/8	1/2		
Nominal outside anchor diameter	$d_a(d_o)^3$	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.750 (19.1)		
Internal thread diameter (UNC)	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)		
Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)	Сh	in.	5/16	7/16	9/16		
Nominal drill bit diameter	d _{bit}	in.	3/8 ANSI	1/2 ANSI	3/4 ANSI		
Minimum hole depth	h _o	in. (mm)	2 (51)	2 (51)	2-1/2 (64)		
Overall anchor length	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)		
Minimum nominal embedment depth ²	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)		
Effective embedment	h _{ef}	in. (mm)	Not Applicable⁴	1.10 (28)	1.54 (39)		
Maximum impact wrench power (torque)	Tscrew	ftlb. (N-m)	120 (163)	345 (468)	345 (468)		
Maximum tightening torque of steel insert element (threaded rod or bolt)	Tmax	ftlb. (N-m)	4 (6)	8 (11)	36 (49)		
	Anchor	rs Installed in Co	ncrete Construction ²				
Minimum member thickness ²	h _{min}	in. (mm)	Not Applicable⁴	4 (102)	4 (102)		
Critical edge distance ²	Cac	in. (mm)	Not Applicable⁴	3 (76)	4 (102)		
Minimum edge distance ²	Cmin	in. (mm)	Not Applicable⁴	3 (76)	4 (102)		
Minimum spacing distance ²	Smin	in. (mm)	Not Applicable⁴	3 (76)	4 (102)		
Anchors Installed in the Topside of Concrete-Filled Steel Deck Assemblies							
Minimum member topping thickness	hmin,deck	in. (mm)	Not Applicable⁴	3-1/4 (83)	Not applicable		
Critical edge distance	Cac,deck,top	in. (mm)	Not Applicable⁴	3 (76)	Not applicable		
Minimum edge distance	Cmin,deck,top	in. (mm)	Not Applicable⁴	3 (76)	Not applicable		
Minimum spacing distance	Smin,deck,top	in. (mm)	Not Applicable⁴	3 (76)	Not applicable		

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. For installations through the soffit of steel deck into concrete, see installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3hef or 1.5 times the flute width.
- 3. The notation in parenthesis is for the 2006 IBC.
- 4. The 1/4-inch diameter anchor is limited to redundant fastening design only.
- $5. \ \ \text{For 3/8-inch diameters installed in the topside of concrete-filled steel deck assemblies, steel installation detail.}$

Dimensional Sketch for Snake+ Screw Anchor Installed with Steel Insert Element

PERFORMANCE DATA

Tension Design Information (For use with load combinations taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2)^{1,2}

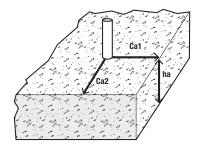
Design Characteristic	Notation Units Nominal And		Unite		hor Diameter
Design Gharacteristic	Notation	01		3/8 inch	1/2 inch
Anchor category	1,2 or 3		-	1	1
Nominal embedment depth	h _{nom}		n. nm)	1-5/8 (41)	2-3/16 (55)
	STEEL STRE	NGTH IN TENSION ⁴			
		ksi	ASTM A36	36	
Minimum specified yield strength of steel insert element	fy	(N/mm²)	ASTM A193, Grade B7	105.0 (724)	-
Minimum specified ultimate strength		ksi	ASTM A36	58 (40	
of steel insert element	f _{uta}	(N/mm²)	ASTM A193, Grade B7	125.0 (862)	-
Effective tensile stress area of steel insert element	$A_{se, N}$ $(A_{se})^{10}$		in² nm²)	0.0775 (50)	0.1419 (92)
Charl abuse with in Associan	N	lb	ASTM A36	4.495 (20.0)	8,230 (37.0)
Steel strength in tension	N _{sa}	(kN)	ASTM A193, Grade B7	9,685 (43.1)	-
Reduction factor for steel strength ³	φ		-	0.0	65
CO	NCRETE BREAKO	UT STRENGTH IN TENS	SION®		
Effective embedment	h _{ef}		in. nm)	1.10 (28)	1.54 (39)
Effectiveness factor for uncracked concrete	Kucr	,	-	24	30
Effectiveness factor for cracked concrete	Kcr		-	17	24
Modification factor for cracked and uncracked concrete ⁵	$\psi_{\scriptscriptstyle extsf{c}, extsf{N}}$			Cracked cor Uncracked co	
Critical edge distance	Cac		n. nm)	3 (76)	4 (102)
Reduction factor for concrete breakout strength ³	ϕ		-	Condition	B = 0.65
	RENGTH IN TENS	ION (NON-SEISMIC AF			
Characteristic pullout strength, uncracked concrete (2,500 psi) ⁶	$N_{p,uncr}$		lb <n)< td=""><td>See note 7</td><td>See note 7</td></n)<>	See note 7	See note 7
Characteristic pullout strength, cracked concrete (2,500 psi) ⁶	$N_{p,cr}$		lb <n)< td=""><td>See note 7</td><td>1,665 (7.4)</td></n)<>	See note 7	1,665 (7.4)
Reduction factor for pullout strength ³	φ	-		0.65 (Co	ndition B)
PULLOUT S	TRENGTH IN TEN	SION FOR SEISMIC AP	PLICATIONS		
Characteristic pullout strength, seismic (2,500 psi) ⁶	$N_{p,eq}$		lb <n)< td=""><td>See note 7</td><td>1,665 (7.4)</td></n)<>	See note 7	1,665 (7.4)
Reduction factor for pullout strength ³	φ	-		Condition	B = 0.65
PULLOUT STRENGTH IN TENSION FOR SOFFIT OF SAND-LIGHT WEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK					
Characteristic pullout strength, uncracked concrete over steel deck ^{6,9}	$N_{p,deck,uncr}$	lb (kN)		1,515 (6.7)	1,625 (7.2)
Characteristic pullout strength, cracked concrete over steel deck ^{6,9}	N _{p,deck,cr}	lb (kN)		1,075 (4.8)	1,300 (5.8)
Characteristic pullout strength, cracked concrete over steel deck, seismic ^{6,9}	Np,deck,eq		lb (kN)		1,300 (5.8)
Reduction factor for pullout strength, concrete over steel deck ³	φ	,	(kN) (4.8) Condition B =		B = 0.65

For SI: 1 inch = 25.4 mm, 1 ksi = 6.894 N/mm²; 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, must apply.
- 2. Installation must comply with published instructions and details.
- 3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2. If the load combinations ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor.
- 4. It is assumed that the threaded rod or bolt used with the Snake+ anchor is a ductile steel element with minimum specified properties as listed in the table or an equivalent steel element. The Snake+ anchor is considered a brittle steel element in tension as defined by ACI 318-14 2.3 or ACI 318-11D.1, as applicable. Tabulated values for steel strength in tension must be used for design.
- 5. For all design cases use $\psi_{\text{cN}} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) and uncracked concrete (k_{umor}) must be used.
- 6. For all design cases use $\psi_{eP} = 1.0$. For concrete compressive strength greater than 2,500 psi, $N_{PP} = (pullout strength from table)^*(specified concrete compressive strength/2,500)^ns. For concrete over steel deck the value of 2,500 must be replaced with the value of 3,000.$
- 7. Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.
- Anchors are permitted to be used in lightweight concrete provided the modification factor λ_a equal to 0.8 λ is applied to all values of √fc affecting N_a and V_a. λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.
- Values for N_{p,deck} are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACl 318-14 17.4.2 or ACl 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).
- 10. The notation in parenthesis is for the 2006 IBC.

Shear Design Information (For use with load combinations taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2)12

Design Characteristic	Notation	Units		Nominal Anchor Diameter		
Design Glidiacteristic	Notation	OI OI	iits	3/8 inch	1/2 inch	
Anchor category	1,2 or 3		-	1	1	
Nominal embedment depth	h _{nom}		n. im)	1-5/8 (41)	2-3/16 (55)	
	STEEL STR	ENGTH IN SHEAR				
Steel strength in shear	Vsa	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
Steel Strength in Shear	Vsa	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for steel strength ³	φ		-	0.0	60	
C	ONCRETE BREAK	OUT STRENGTH IN SHE	AR ⁶			
Nominal outside anchor diameter	da(d₀)¹0		n. nm)	0.500 (12.7)	0.750 (19.1)	
Load bearing length of anchor (her or 8do, whichever is less)	l _e		-	1.10 (28)	1.54 (39)	
Reduction factor for concrete breakout strength ³	φ		-	Condition B = 0.70		
	PRYOUT ST	RENGTH IN SHEAR®				
Coefficient for pryout strength (1.0 for $h_{\text{ef}} < 2.5$ in, 2.0 for $h_{\text{ef}} \ge 2.5$ in.)	Кср		-	1.0	1.0	
Effective embedment	hef		in. (mm)		1.54 (39)	
Reduction factor for pullout strength ³	ϕ		-	Condition B = 0.70		
STEEL S	TRENGTH IN SHE	AR FOR SEISMIC APPL	ICATIONS			
Steel strength in shear, seismic ⁷	V _{sa.eq}	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
oter strongth in shear, seismic	v sa,eq	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Reduction factor for pullout strength ³	φ		_	Condition	B = 0.60	
STEEL STRENGTH IN SHEAR FOR SOFF	T OF SAND-LIGHT	WEIGHT AND NORMA	L-WEIGHT CONCRETE O	VER STEEL DECK ⁹		
Steel strength in shear, concrete over steel deck ⁸	V _{sa,deck}	lb	ASTM A36	770 (3.4)	1,995 (8.9)	
Steel Strength in Shear, Contrete over Steel deck	V sa,deck	(kN)	ASTM A193, Grade B7	1,655 (7.4)	-	
Steel strength in shear, concrete over steel deck, seismic ⁸	Vsa.deck.eg	lb	ASTM A36	770 (3)	1,995 (8.9)	
oteel auengui ili sheal, concrete ovel steel ueck, seisillic	V sa,deck,eq	(kN)	ASTM A193, Grade B7	1,665 (7.4)	-	
Reduction factor for pullout strength ³	φ		-	Condition B = 0.60		


For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3 shall apply.
- 2. Installation must comply with published instructions and details.
- 3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate ϕ factor.
- 4. It is assumed that the threaded rod or bolt used with the Snake+ anchor will be a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.
- 5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation 17.5.1.2b in ACI 318-14, D-29 in ACI 318-11, and ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable.
- 6. Anchors are permitted to be used in lightweight concrete provided the modification factor λ_{a} equal to 0.8λ is applied to all values of $\sqrt{f^{\dagger \text{C}}}$ affecting N_{a} and V_{n} . λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.
- 7. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 Section 9.6.
- 8. Tabulated values for V_{sadeck} are for sand-lightweight concrete (f'c,min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3 are not required for anchors installed in the deck soffit (flute).
- 9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.
- 10. The notation in parenthesis is for the 2006 IBC.

Factored Design Strength (ØNn And ØVn) Calculated In Accordance With ACI 318-14 Chapter 17:

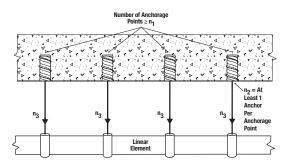
- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$).
 - ca2 is greater than or equal to 1.5 times ca1.
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, hef, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3- Strength reduction factors (ø) were based on ACl 318-14 Section 5.3 for load combinations. Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 Chapter 17.
- 6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.

Tension and Shear Design Strengths Installed in Cracked Concrete

Minimum Concrete Compressive Strength, f'c (psi) **Nominal** Nominal Insert 2,500 4,000 6,000 8,000 3.000 Element (Threaded Anchor Embed. Size **∲Vn** Shear (lbs.) $\phi_{\rm Nn}$ Tension ϕ Nn Tension ϕ Vn Shear (lbs.) ϕ Nn Tension ϕ Nn Tension **∲Vn** Shear (lbs.) ϕ Vn Shear (in.) (in.) Rod or Bolt) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) (lbs.) ASTM A36 635 500 700 500 805 985 1,140 3/8 1-5/8 ASTM A193 750 635 685 700 805 870 985 1,065 1,140 Grade B7 1,295 1/2 2-3/16 ASTM A36 1,080 1.185 1,295 1.370 1,295 1,675 1,295 1,935 1,295 🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 🔳 - Steel Strength Controls

Tension and Shear Design Strengths Installed in Uncracked Concrete

		Steel		Minimum Concrete Compressive Strength, f'c (psi)								
Nominal Anchor	Nominal Embed.	Insert Element	2,5	500	3,0	000	4,0	000	6,0	000	8,0	00
Size (in.)	h _{nom} (in.)	(Threaded Rod or Bolt)	ϕ Nn Tension (lbs.)	ØVn Shear (lbs.)	ΦNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ØNn Tension (lbs.)	ØVn Shear (lbs.)	ΦNn Tension (lbs.)	ØVn Shear (lbs.)
3/8	1-5/8	ASTM A36	900	500	985	500	1,140	500	1,395	500	1,610	500
3/0	1-0/6	ASTM A193 Grade B7	900	970	985	1,060	1,140	1,075	1,395	1,075	1,610	1,075
1/2	2-3/16	ASTM A36	1,865	1,295	2,040	1,295	2,355	1,295	2,885	1,295	3,335	1,295
- Anchor Pu	llout/Pryout Stre	ngth Controls 🔲	- Concrete Bre	akout Strength	Controls -	Steel Strength	Controls					



REDUNDANT FASTENING APPLICATIONS

For an anchoring system designed with redundancy, the load maintained by an anchor that experiences failure or excessive deflection can be transmitted to neighboring anchors without significant consequences to the fixture or remaining resistance of the anchoring system. In addition to the requirements for anchors, the fixture being attached shall be able to resist the forces acting on it assuming one of the fixing points is not carrying load. It is assumed that by adhering to the limits placed on n_1 , n_2 and n_3 below, redundancy will be satisfied.

Anchors qualified for redundant applications may be designed for use in normal weight and sand-lightweight cracked and uncracked concrete. Concrete compressive strength of 2,500 psi shall be used for design. No increase in anchor capacity is permitted for concrete compressive strengths greater than 2,500 psi. The anchor installation is limited to concrete with a compressive strength of 8,500 psi or less.

Redundant applications shall be limited to structures assigned to Seismic Design Categories A or B only. Redundant applications shall be limited to support of nonstructural elements.

Strength Design (Redundant Fastening):

For strength design, a redundant system is achieved by specifying and limiting the following variables

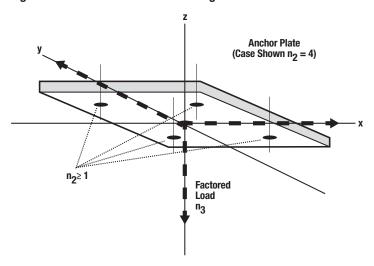
 $\label{eq:n1} n_1 = \text{the total number of anchorage points supporting the} \\ \text{linear element}$

 n_2 = number of anchors per anchorage point

 $n_3=$ factored load at each anchorage point, lbs., using load combinations from IBC Section 1605.2.1 or ACI 318-14 Section 5.3 or ACI 318 (-11,-08,-05) Section 9.2.

Allowable Stress Design (Redundant Fastening):

Design values for use with allowable stress design shall be established taking


 R_d , $ASD = \underline{\phi_{ra} \bullet F_{ra}}$

Where α is the conversion factor calculated as the weighted average of the load factors from the controlling load combination. The conversion factor, α is equal to 1.4 assuming all dead load.

Strength Design (SD)

Design values for use with strength design shall be established taking $\phi_{ra} \bullet F_{ra}$.

See redundant fastening design information table for Snake+ design resistance.

REDUNDANT FASTENING

Installation Information for Snake+ Screw Anchor in Redundant Fastening Applications

Anchor Property/ Setting Information	Notation	Units	Nominal Anchor Size / Threaded Couplier Diameter (inch)			
Setting Information	Notation	Units	1/4	3/8	1/2	
Nominal drill bit diameter	dbit	in.	3/8 ANSI	1/2 ANSI	3/4 ANSI	
Nominal embedment depth	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-3/16 (55)	
Effective embedment	h _{ef}	in. (mm)	1.10 (28)	1.10 (28)	1.54 (39)	
Minimum hole depth	h₀	in. (mm)	2 (51)	2 (51)	2-1/2 (64)	
Minimum concrete member thickness	h _{min}	in. (mm)	3 (76.2)	3 (76.2)	3 (76.2)	
Overall anchor legnth	lanch	in. (mm)	1-1/4 (32)	1-1/4 (32)	1-11/16 (43)	
Minimum edge distance, redundant fastening¹	Cmin = Cac	in. (mm)	4 (102)	4 (102)	4 (102)	
Minimum spacing distance, redundant fastening ¹	Smin	in. (mm)	8 (203)	8 (203)	8 (203)	
Maximum tightening torque of steel insert element (threaded rod or bolt)	T _{max}	ftlb. (N-m)	4 (6)	8 (11)	36 (49)	
Maximum impact wrench power (torque)	Tscrew	ftlb. (N-m)	120 (163)	345 (468)	345 (468)	

Tabulated minimum spacing and edge distances are applicable only for redundant fastening applications.

Redundant Fastening Design Information for Snake+ Anchors^{1,2,3}

Anchor Property/	Notation Units		Nominal Anchor Size					
Setting Information	Notation	UIIIIS	1/	4"	3/8"		1/2"	
Anchor category	1,2 or 3	-			1	1	1	
Nominal embedment depth	h _{nom}	in. (mm)	1-! (4	5/8 1)	1-5 (4	5/8 1)	2-3 (5	
C	HARACTERISTIC	STRENGTH (RES	ISTANCE) INST	ALLED IN CONC	RETE ^{4,5}			
			Numl anchora	oer of ge points	Numb anchoraç	oer of ge points	Numb anchoraç	
Resistance, cracked or uncracked concrete (2,500psi)	Fra	lb (kN)	n₁ ≥ 4	$n_1 \geq 3$	$n_1 \geq 4$	$n_1 \geq 3$	$n_1 \geq 4$	$n_1 \geq 3 $
(2,000)01)			550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	$\phi_{ ext{ra}}$	-			0.0	65		
CHARACTERISTIC STRENGT	H (RESISTANCE)	FOR SAND-LIGH	TWEIGHT AND	NORMAL WEIGH	IT CONCRETE O	VER STEEL DE	CK4,6	
				per of ge points	Numb anchoraç		Numb anchoraç	
Resistance, cracked or uncracked concrete over steel deck (2,500 psi)	Fra,deck	lb (kN)	n₁ ≥ 4	$n_1 \geq 3$	n₁ ≥ 4	n₁ ≥ 3	n₁ ≥ 4	$n_1 \geq 3$
ονοι στουι ασυκ (Σ,σσο μοι)		(144)	550 (2.5)	360 (1.6)	675 (3.0)	450 (2.0)	675 (3.0)	450 (2.0)
Strength reduction factor ³	$\phi_{ ext{ra}}$	-			0.0	65		

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

- 1. The data in this table is intended to be used with the design provisions of Section 4.3 of this report; loads may be applied in tension, shear or any combination thereof.
- 2. Installation must comply with published instructions and this report.
- 3. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318 (-11, -08, -05) Section 9.2, as applicable.
- 4. It is assumed that the threaded rod or bolt used with the Snake+ anchor has properties as listed in Tension Design Information table.
- 5. Anchors are permitted to be used in lightweight concrete provided the design strength ϕ_n F_n is multiplied by the modification factor λ_n . The modification factor λ_n is equal to 0.8λ , λ shall be determined in accordance with the corresponding version of ACI 318. For anchors installed in the soffit of sand-lightweight concrete-filled steel deck and floor and roof assemblies, further reduction of the pullout values provided in not required.
- 6. For installations through the soffit of steel deck into concrete see the installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute equal to the greater of 3het or 1.5 times the flute width.

Ultimate Tension Load Capacities for Snake+ in Normal-Weight Uncracked Concrete^{1,2,3,4}

	Minimum		Minimum Concrete Compressive Strength						
Nominal Anchor	Embedment	f'c = 2,500 p	si (17.2 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 6,000 psi (41.4 MPa)			
Diameter in.	Depth in. (mm)	Tension lbs. (kN)	Shear Ibs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)		
1/4	1-5/8 (41)	2,130 (9.5)	1,045 (4.6)	2,335 (10.4)	1,045 (4.6)	-	-		
3/8	1-5/8 (41)	2,165 (9.7)	1,045 (4.6)	2,370 (10.6)	1,045 (4.6)	3,190 (14.2)	1,045 (4.6)		
1/2	2-3/16 (55)	5,590 (24.9)	2,050 (9.1)	6,125 (27.3)	2,050 (9.1)	7,240 (32.0)	2,050 (9.1)		

- 1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.
- 2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.
- 3. The tabulated load values are applicable to single anchors in uncracked concrete installed at critical spacing distance between anchors and at critical edge distance.
- 4. Ultimate shear capacity is controlled by steel strength of ASTM A36 element (or equivalent).

ORDERING INFORMATION

Carbon Steel Snake+ Screw Anchor

Cat. No.	Anchor Size	Embedment	Internal Thread Depth	Std. Box ¹	Std. Ctn.	
6400SD	1/4"	1-5/8"	11/32"	100	1,000	
6401SD	3/8"	1-5/8"	23/32"	50	500	
6403SD	1/2"	2-1/2"	15/16"	50	300	
1. Each box con	Each box comes with one free setting tool					

Setting Tool for Snake+ Screw Anchor

Cat. No.	Anchor Size	Std. Ctn.
6402SD	1/4"	1
6407SD	3/8"	1
6404SD	1/2"	1

Suggested Impact Wrench

onggooden impues menen						
	20V Max* Impact Wrenches					
1/4	DCF880M2	•				
3/8	1/2" Impact Wrench	Email Control				
3/8	DCF894HP2	***************************************				
1/2	- 3/8 and 1/2" Impact Wrench High Torque					