

## **GENERAL INFORMATION**

# **BI-FLEX®**

Bi-Metal Self-Drilling Structural Screws

### PRODUCT DESCRIPTION

Bi-Flex structural screws are bi-metal self-drilling tapping screws that provide the corrosion resistance of 300 series stainless steel and the efficiency of drill screws. Bi-Flex screws are suitable for use in both steel and aluminum.

## **GENERAL APPLICATIONS AND USES**

- Steel-to-steel connections
- Aluminum-to-steel connections
- Aluminum-to-aluminum connections
- Wood-to-steel connections

#### FEATURES AND BENEFITS

- + High strength, ductility and reliabliity
- + Immune to hydrogen assisted stress corrosion cracking (HASCC)
- + Higher corrosion resistance compared with carbon steel and 410 series stainless steel fasteners
- + Stalgard GB coating creates greater galvanic compatibility in dissimilar metal applications, including connections involving aluminum
- + 18-8 stainless compatible with pressure treated lumber

#### APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-4367
- Code compliant with the International Building Code/International Residential Code: 2018 IBC/IRC, 2012 IBC/IRC, and 2009 IBC/IRC
- City of Los Angeles, Supplement for 2020 LABC/LARC (in ESR-4367)
- Tested in accordance with AISI S905 and ICC-ES AC500 for attaching Miscellaneous Building Materials to Steel
- City of Los Angeles, Research Report RR 25886

# **GUIDE SPECIFICATIONS**

05 05 23 – Metal Fastenings, 09 22 16.23 – Fasteners. Fasteners shall be Bi-Flex as supplied by Elco Construction Products, Towson, MD. Fasteners shall be installed with published instructions and the Authority Having Jurisdiction.

#### **SECTION CONTENTS**

| General Information         | 1 |
|-----------------------------|---|
| Installation Specifications | 2 |
| Performance Data            | 3 |
| Ordering Information        | 8 |

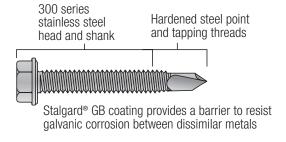


#### **ANCHOR MATERIALS**

 300 series (18-8) stainless head and shank and hardened steel tapping threads and drill point

#### **DIAMETER**

- #8, #10, #12
- 1/4"


#### **HEAD STYLES**

- Hex Washer Head (HWH)
- Pan Head (PPH)
- Pancake Head (PPCKH)
- Undercut Flat Head (PUFH)
- Flat Head (PFH)

#### **FINISH**

• Stalgard GB (Galvanic Barrier) coating

CODE LISTED
ICC-ES ESR-4367
WOOD-TO-STEEL



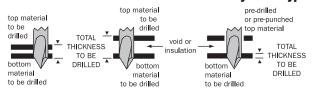
#### Identification

The head marking consists of the number "3" above the ELCO® logo as shown below.



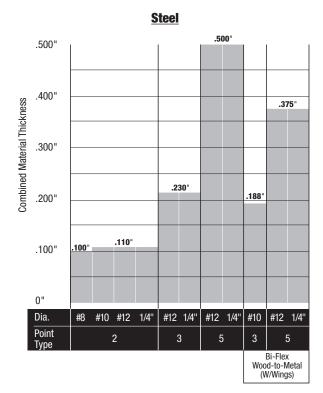
Hex Washer Head

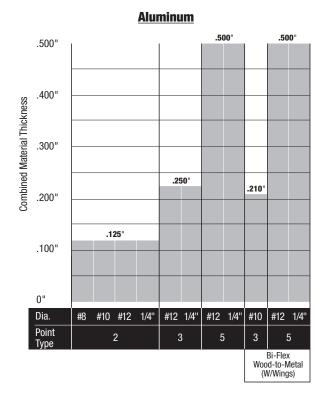



Flat, Pan and Pancake Head

1




# **INSTALLATION SPECIFICATIONS**


# Point Size Selection Maximum Combined Material Thickness By Point Type



| Maximum Re<br>Installat    | ecommended<br>ion RPM |       | al Sheet<br>I Sizes | Nominal S   | crew Sizes    |
|----------------------------|-----------------------|-------|---------------------|-------------|---------------|
| Diameter                   | RPM                   | Gauge | Decimal (in.)       | Thread Dia. | Decimal (in.) |
| #8                         |                       | 25    | 0.021               | #8          | .164          |
| #10                        | 2500                  | 22    | 0.030               | #10         | .190          |
| #12                        |                       | 20    | 0.036               | #12         | .216          |
| #12**                      | 1800                  | 18    | 0.048               | 1/4"        | .250          |
| 1/4"                       | 1600                  | 16    | 0.060               |             |               |
| ** Applies to #12 diameter |                       | 14    | 0.075               |             |               |
| screws with poin           | т туре 5              | 12    | 0.105               |             |               |

# **Drilling and Tapping Capacity (Maximum Material Thickness)**







## **PERFORMANCE DATA**

# **Fastener Strengths**<sup>1,2,3,4,5,6,7</sup>

|             | Head            |          | Tension (lbf) |       |          | Minimum<br>Torsional |       |                      |
|-------------|-----------------|----------|---------------|-------|----------|----------------------|-------|----------------------|
| Description | Styles          | Ultimate | ASD           | LRFD  | Ultimate | ASD                  | LRFD  | Strength<br>(in-lbs) |
| #8-18       | HWH             | 1,580    | 525           | 790   | 1,120    | 370                  | 560   | 45                   |
| #8-18       | PPH             | 1,375    | 455           | 685   | 1,045    | 345                  | 520   | 32                   |
| #10-16      | HWH             | 1,845    | 615           | 920   | 1,280    | 425                  | 640   | 48                   |
| #10-16      | PPH, PPCKH, PFH | 1,755    | 585           | 875   | 1,405    | 465                  | 700   | 43                   |
| #12-14      | HWH             | 2,625    | 875           | 1,310 | 1,950    | 650                  | 975   | 95                   |
| #12-14      | PUFH, PPCKH     | 2,185    | 725           | 1,090 | 1,525    | 505                  | 760   | 73                   |
| #12-24      | HWH             | 2,730    | 910           | 1,365 | 2,280    | 760                  | 1,140 | 95                   |
| #12-24      | PFH             | 2,390    | 795           | 1,195 | 1,840    | 610                  | 920   | 73                   |
| 1/4"-14     | HWH             | 3,455    | 1,150         | 1,725 | 2,675    | 890                  | 1,335 | 135                  |
| 1/4"-20     | HWH             | 4,120    | 1,370         | 2,060 | 2,860    | 950                  | 1,430 | 135                  |
| 1/4"-20     | PUFH, PFH       | 3,405    | 1,135         | 1,700 | 2,550    | 850                  | 1,275 | 108                  |

- 1. Ultimate strengths are based on laboratory tests.
- 2. Allowable (ASD) strengths are based on a safety factor,  $\Omega$ , of 3.00 in accordance with ICC-ES AC118 and AISI S100-16.
- 3. Design (LRFD) strengths are based on a resistance factor,  $\phi$ , of 0.50 in accordance with ICC-ES AC118 and AISI S100-16.
- 4. For ASD tension connections, the lower of the ASD tension strength, ASD pull-out strength and ASD pull-over strength must be used for design.
- 5. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.
- 6. For ASD shear connections, the lower of the ASD Shear (Bearing) Capacity and the ASD Fastener Shear Strength must be used for design.
- 7. For LRFD shear connections, the lower of the LRFD Shear (Bearing) Capacity and the LRFD Fastener Shear Strength must be used for design.

## Ultimate Shear (Bearing) Capacity of Screw Connections in Steel, lbf12

| Diameter | Head Style       | Steel Thickness (Lapped Sheets/Bars) |           |           |           |             |               |  |  |  |  |  |
|----------|------------------|--------------------------------------|-----------|-----------|-----------|-------------|---------------|--|--|--|--|--|
| Diameter | neau Style       | 18-18 Ga.                            | 16-16 Ga. | 14-14 Ga. | 12-12 Ga. | 1/8" - 1/8" | 3/16" - 3/16" |  |  |  |  |  |
| #8-18    | HWH, PPH         | 805                                  | -         | -         | -         | -           | -             |  |  |  |  |  |
| #10-16   | HWH, PPCKH, PFH  | 865                                  | 1,210     | 1,690     | -         | -           | -             |  |  |  |  |  |
| #12-14   | HWH, PPCKH, PUFH | 925                                  | 1,290     | 1,805     | 2,755     | -           | -             |  |  |  |  |  |
| #12-24   | HWH              | 925                                  | 1,290     | 1,805     | 2,755     | 3,280       | 4,920         |  |  |  |  |  |
| 1/4"-14  | HWH              | 995                                  | 1,390     | 1,940     | 3,190     | -           | -             |  |  |  |  |  |
| 1/4"-20  | HWH              | 995                                  | 1,390     | 1,940     | 3,190     | 3,795       | 5,695         |  |  |  |  |  |

<sup>1.</sup> Ultimate strengths are based on calculations in accordance with AISI S100-16.

# Allowable (ASD) Shear (Bearing) Capacity of Screw Connections in Steel, lbf1.2.3.4.5.6

| Diameter | Head Style       |           |           | Steel Thickness (La | apped Sheets/Bars) |             |               |
|----------|------------------|-----------|-----------|---------------------|--------------------|-------------|---------------|
| Diameter | neau Style       | 18-18 Ga. | 16-16 Ga. | 14-14 Ga.           | 12-12 Ga.          | 1/8" - 1/8" | 3/16" - 3/16" |
| #8-18    | HWH, PPH         | 270       | -         | -                   | -                  | -           | -             |
| #10-16   | HWH, PPCKH, PFH  | 290       | 405       | 565                 | -                  | -           | -             |
| #12-14   | HWH, PPCKH, PUFH | 310       | 430       | 600                 | 920                | -           | -             |
| #12-24   | HWH              | 310       | 430       | 600                 | 920                | 1,095       | 1,640         |
| 1/4"-14  | HWH              | 330       | 465       | 645                 | 1,065              | -           | -             |
| 1/4"-20  | HWH              | 330       | 465       | 645                 | 1,065              | 1,265       | 1,900         |

- 1. Allowable (ASD) strengths are based on a safety factor,  $\Omega$ =3.00, determined in accordance with AISI S100-16.
- 2. Values are based on steel members with with a minimum tensile strength of Fu = 45 ksi.
- 3. Allowable (ASD) Shear (Bearing) capacities for other member thicknesses may be determined by interpolating within the table.
- 4. For ASD shear connections, the lower of the ASD Shear (Bearing) Capacity and the ASD Fastener Shear Strength must be used for design.
- 5. For steel with a minimum tensile strength  $F_u \ge 58$  ksi, multiply tabulated values by 1.29 and for steel with a minimum tensile strength  $F_u \ge 65$  ksi steel, multiply tabulated values by 1.44.
- 6. The first number is the thickness of steel in contact with the screw head, the second number is the thickness of the steel not in contact with the screw head.

<sup>2.</sup> Ultimate load capacities must be reduced by a minimum safety factor to determine allowable loads (ASD) or by a load resistance factor to determine strength design capacities (LRFD).



# Design (LRFD) Shear (Bearing) Capacity of Screw Connections in Steel, lbf 1,2,3,4,5,6

| Diameter | Head Styles      |           |           | Steel Thickness (La | pped Sheets/ Bars) |             |               |
|----------|------------------|-----------|-----------|---------------------|--------------------|-------------|---------------|
| Diameter | neau Styles      | 18-18 Ga. | 16-16 Ga. | 14-14 Ga.           | 12-12 Ga.          | 1/8" - 1/8" | 3/16" - 3/16" |
| #8-18    | HWH, PPH         | 405       | -         | -                   | -                  | -           | -             |
| #10-16   | HWH, PPCKH, PFH  | 435       | 605       | 845                 | -                  | -           | -             |
| #12-14   | HWH, PPCKH, PUFH | 460       | 645       | 900                 | 1,380              | -           | -             |
| #12-24   | HWH              | 460       | 645       | 900                 | 1,380              | 1,640       | 2,460         |
| 1/4"-14  | HWH              | 495       | 695       | 970                 | 1,595              | -           | -             |
| 1/4"-20  | HWH              | 495       | 695       | 970                 | 1,595              | 1,900       | 2,850         |

- 1. Design (LRFD) strengths are based on a safety factor,  $\phi = 0.50$  determined in accordance with AISI S100-16.
- 2. Values are based on steel members with a minimum tensile strength of  $F_u = 45$  ksi.
- 3. Design (LRFD) Shear (Bearing) capacities for other member thicknesses may be determined by interpolating within the table.
- 4. For LRFD shear connections, the lower of the LRFD Shear (Bearing) Capacity and the LRFD Fastener Shear Strength must be used for design.
- 5. For steel with a minimum tensile strength  $F_u \ge 58$  ksi, multiply tabulated values by 1.29 and for steel with a minimum tensile strength  $F_u \ge 65$  ksi steel, multiply tabulated values by 1.44.
- 6. The first number is the thickness of steel in contact with the screw head, the second number is the thickness of the steel not in contact with the screw head.

# **Ultimate Tension Pull-Out Capacity of Screw Connections in Steel, lbf**<sup>1,2</sup>

| Diameter        | Daint Tons |        |        |        | Steel Thickness |       |       |       |  |
|-----------------|------------|--------|--------|--------|-----------------|-------|-------|-------|--|
| Diameter        | Point Type | 18 Ga. | 16 Ga. | 14 Ga. | 12 Ga.          | 1/8"  | 3/16" | 1/4"  |  |
| #8-18           | #2         | 300    | 335    | 525    | 855             | -     | -     | -     |  |
| #10-16          | #2         | 275    | 405    | 475    | 835             | -     | -     | -     |  |
| #10-16          | #3         | -      | 370    | 410    | 745             | 965   | 1,185 | -     |  |
| #10-16 w/wings  | #3         | -      | 350    | -      | -               | 1,360 | -     | -     |  |
| #12-14          | #2         | 315    | 450    | 535    | 920             | -     | -     | -     |  |
| #12-14          | #3         | 250    | 405    | 480    | 825             | 1,215 | 1,940 | -     |  |
| #12-24          | #5         | -      | -      | -      | -               | -     | 1,635 | 2,160 |  |
| #12-24 w/wings  | #5         | -      | 350    | -      | -               | 1,140 | -     | 1,525 |  |
| 1/4"-14         | #2         | 370    | 530    | 650    | 1,100           | -     | -     | -     |  |
| 1/4"-20         | #3         | -      | 410    | 470    | 865             | 1,575 | 2,860 | -     |  |
| 1/4"-20 w/wings | #5         | -      | 250    | -      | -               | 950   | -     | 2,105 |  |
| 1/4"-20         | #5         | -      | -      | -      | -               | -     | -     | 2,390 |  |

<sup>1.</sup> Ultimate strengths are based on laboratory tests.

#### Allowable Tension Pull-Out Capacity of Screw Connections in Steel, lbf1,2,3,4,5

| Diameter        | Doint Time |        |        |        | Steel Thickness |                    |       |      |
|-----------------|------------|--------|--------|--------|-----------------|--------------------|-------|------|
| Diameter        | Point Type | 18 Ga. | 16 Ga. | 14 Ga. | 12 Ga.          | 1/8"               | 3/16" | 1/4" |
| #8-18           | #2         | 100    | 110    | 175    | 285             | -                  | -     | -    |
| #10-16          | #2         | 90     | 135    | 160    | 280             | -                  | -     | -    |
| #10-16          | #3         | -      | 125    | 135    | 250             | 320                | 395   | -    |
| #10-16 w/wings  | #3         | -      | 110    | -      | -               | 500 <sup>[6]</sup> | -     | -    |
| #12-14          | #2         | 105    | 150    | 180    | 305             | -                  | -     | -    |
| #12-14          | #3         | 85     | 135    | 160    | 275             | 405                | 645   | -    |
| #12-24          | #5         | -      | -      | -      | -               | -                  | 545   | 720  |
| #12-24 w/wings  | #5         | -      | 90     | -      | -               | 380 [6]            | -     | 565  |
| 1/4"-14         | #2         | 125    | 175    | 215    | 365             | -                  | -     | -    |
| 1/4"-20         | #3         | -      | 135    | 155    | 290             | 525                | 955   | -    |
| 1/4"-20 w/wings | #5         | -      | 55     | -      | -               | 385 <sup>[6]</sup> | -     | 780  |
| 1/4"-20         | #5         | -      | -      | -      | -               | -                  | -     | 795  |

- 1. Unless otherwise noted, Allowable (ASD) strengths are based on a safety factor, Ω=3.00, determined in accordance with ICC-ES AC118 and AISI S100-16.
- 2. Values are based on steel members with a minimum tensile strength of  $F_{\text{\tiny u}}=45~\text{ksi}.$
- 3. Allowable (ASD) pull-out capacities for other member thicknesses may be deterimined by interpolating within the table.
- 4. For ASD tension connections, the lower of the ASD tension strength, ASD pull-out strength and ASD pull-over strength must be used for design.
- 5. Unless otherwise noted, for 18 gauge through 1/4" thick steel with a minimum tensile strength  $F_u \ge 52$  ksi, multiply tabulated values by 1.15; when  $F_u \ge 58$  ksi, multiply tabulated values by 1.29. For 18 gauge through 1/8" thick steel, when  $F_u \ge 65$  ksi steel, multiply tabulated values by 1.44.
- Allowable (ASD) strengths are based on a safety factor, Ω, determined in accordance with ICC-ES AC500 and AISI S100-16. For steel with a minimum tensile strength F<sub>u</sub> ≥ 52 ksi, multiply tabulated values by 1.15.

<sup>2.</sup> Ultimate load capacities must be reduced by a minimum safety factor to determine allowable loads (ASD) or by a load resistance factor to determine strength design capacities (LRFD).



# **Design Tension Pull-Out Capacity of Screw Connections in Steel, lbf** 1,2,3,4,5

| Diamatau        | Doint Time |        |        |        | Steel Thickness |                    |       |       |
|-----------------|------------|--------|--------|--------|-----------------|--------------------|-------|-------|
| Diameter        | Point Type | 18 Ga. | 16 Ga. | 14 Ga. | 12 Ga.          | 1/8"               | 3/16" | 1/4"  |
| #8-18           | #2         | 150    | 165    | 265    | 430             | -                  | -     | -     |
| #10-16          | #2         | 135    | 205    | 240    | 420             | -                  | -     | -     |
| #10-16          | #3         | -      | 185    | 205    | 375             | 480                | 590   | -     |
| #10-16 w/wings  | #3         | -      | 175    | -      | -               | 800 [6]            | -     | -     |
| #12-14          | #2         | 160    | 225    | 270    | 460             | -                  | -     | -     |
| #12-14          | #3         | 125    | 205    | 240    | 410             | 610                | 970   | -     |
| #12-24          | #5         | -      | -      | -      | -               | -                  | 820   | 1,080 |
| #12-24 w/wings  | #5         | -      | 140    | -      | -               | 605 [6]            | -     | 900   |
| 1/4"-14         | #2         | 185    | 265    | 325    | 550             | -                  | -     | -     |
| 1/4"-20         | #3         | -      | 205    | 235    | 435             | 785                | 1,430 | -     |
| 1/4"-20 w/wings | #5         | -      | 90     | -      | -               | 615 <sup>[6]</sup> | -     | 1,245 |
| 1/4"-20         | #5         | -      | -      | -      | -               | -                  | -     | 1,195 |

- 1. Unless otherwise noted, Design (LRFD) strengths are based on a resistance factor,  $\phi = 0.50$  determined in accordance with ICC-ES AC118 and AISI S100-16.
- 2. Values are based on steel members with a minimum tensile strength of  $F_{\text{u}}=45\ \text{ksi}$
- 3. Design (LRFD) pull-out capacities for other member thicknesses may be deterimined by interpolating within the table.
- 4. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.
- 5. Unless otherwise noted, for 18 gauge through 1/4" thick steel with a minimum tensile strength  $F_u \ge 52$  ksi, multiply tabulated values by 1.15; when  $F_u \ge 58$  ksi, multiply tabulated values by 1.29. For 18 gauge through 1/8" thick steel, when  $F_u \ge 65$  ksi steel, multiply tabulated values by 1.44.
- 6. Design (LRFD) strengths are based on a resistance factor,  $\phi$ , determined in accordance with ICC-ES AC500 and AISI S100-16. For steel with a minimum tensile strength  $F_u \ge 52$  ksi, multiply tabulated values by 1.15.

# Ultimate, Allowable (ASD), and Design (LRFD) Pull-Over Capacity of Screw Connections in Steel, lbf 12345

|                      |       |          | Minimum Thickness of Steel or Framing Member in Contact with Screw Head |      |       |          |      |       |          |      |          |     |      |          |     |       |
|----------------------|-------|----------|-------------------------------------------------------------------------|------|-------|----------|------|-------|----------|------|----------|-----|------|----------|-----|-------|
| Diameter Head Styles |       | 25 Gauge |                                                                         |      | :     | 22 Gauge |      |       | 20 Gauge |      | 18 Gauge |     |      | 16 Gauge |     |       |
|                      |       | Ult.     | ASD                                                                     | LRFD | Ult.  | ASD      | LRFD | Ult.  | ASD      | LRFD | Ult.     | ASD | LRFD | Ult.     | ASD | LRFD  |
| #8-18                | HWH   | 475      | 160                                                                     | 235  | 675   | 225      | 340  | 810   | 270      | 405  | 1,080    | 360 | 540  | 1,350    | 450 | 675   |
| #8-18                | PPH   | 445      | 150                                                                     | 220  | 635   | 210      | 315  | 760   | 255      | 380  | 1,015    | 340 | 505  | 1,265    | 420 | 635   |
| #10-16               | HWH   | 565      | 190                                                                     | 280  | 805   | 270      | 405  | 965   | 320      | 485  | 1,285    | 430 | 645  | 1,610    | 535 | 805   |
| #10-16               | PPCKH | 615      | 205                                                                     | 310  | 880   | 295      | 440  | 1,060 | 355      | 530  | 1,410    | 470 | 705  | 1,765    | 590 | 880   |
| #10-16               | PPH   | 515      | 170                                                                     | 255  | 735   | 245      | 370  | 885   | 295      | 440  | 1,180    | 395 | 590  | 1,475    | 490 | 735   |
| #12-14               | HWH   | 585      | 195                                                                     | 295  | 840   | 280      | 420  | 1,005 | 335      | 505  | 1,340    | 445 | 670  | 1,675    | 560 | 840   |
| #12-24               | HWH   | 585      | 195                                                                     | 295  | 840   | 280      | 420  | 1,005 | 335      | 505  | 1,340    | 445 | 670  | 1,675    | 560 | 840   |
| #12-14               | PPCKH | 615      | 205                                                                     | 310  | 880   | 295      | 440  | 1,060 | 355      | 530  | 1,410    | 470 | 705  | 1,765    | 590 | 880   |
| 1/4"-14              | HWH   | 705      | 235                                                                     | 355  | 1,010 | 335      | 505  | 1,210 | 405      | 605  | 1,615    | 540 | 805  | 2,020    | 675 | 1,010 |
| 1/4"-20              | HWH   | 705      | 235                                                                     | 355  | 1,010 | 335      | 505  | 1,210 | 405      | 605  | 1,615    | 540 | 805  | 2,020    | 675 | 1,010 |

- 1. Tabulated pull-over strengths were calculated in accordance with AISI S100-16. Allowable (ASD) and Design (LRFD) strengths are based on a safety factor, Ω, and resistance factor, φ, of 3.00 and 0.50 respectively. in accordance with AISI S100-16.
- 2. Pan head and pancake head fasteners do not meet the requirements of AISI S100-16. However, laboratory testing showed calculated pull-over capacities to be conservative, and thus, these capacities are reported in the table.
- 3. Values are based on steel with a minimum tensile strength of  $F_{\text{\tiny U}}=45$  ksi.
- 4. For ASD tension connections, the lower of the ASD tension strength, ASD pull-out strength and ASD pull-over strength must be used for design.
- 5. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.

## Ultimate Shear (Bearing) Capacity of Screw Connections in Aluminum, Ibf<sup>1,2</sup>

|          |                  |         | Aluminum Thickness (Lapped Sheets/Bars) |         |              |         |         |             |         |         |             |         |         |  |
|----------|------------------|---------|-----------------------------------------|---------|--------------|---------|---------|-------------|---------|---------|-------------|---------|---------|--|
| Diameter | Head Styles      | 1       | /16" - 1/16                             | ;ii     | 1/16" - 1/8" |         |         | 1/8" - 1/8" |         |         | 1/8" - 1/4" |         |         |  |
|          |                  | 6063-T5 | 6063-T6                                 | 6061-T6 | 6063-T5      | 6063-T6 | 6061-T6 | 6063-T5     | 6063-T6 | 6061-T6 | 6063-T5     | 6063-T6 | 6061-T6 |  |
| #8-18    | HWH, PPH         | 335     | 460                                     | 645     | 335          | 460     | 645     | 665         | 920     | 1,290   | -           | -       | -       |  |
| #10-16   | HWH, PPCKH, PFH  | 390     | 530                                     | 745     | 390          | 530     | 745     | 780         | 1,065   | 1,495   | -           | -       | -       |  |
| #12-14   | HWH, PPCKH, PUFH | 445     | 605                                     | 850     | 445          | 605     | 850     | 890         | 1,215   | 1,700   | 890         | 1,215   | 1,700   |  |
| #12-24   | HWH              | 445     | 605                                     | 850     | 445          | 605     | 850     | 890         | 1,215   | 1,700   | 890         | 1,215   | 1,700   |  |
| 1/4"-14  | HWH              | 515     | 700                                     | 980     | 515          | 700     | 980     | 1,030       | 1,405   | 1,965   | 1,030       | 1,405   | 1,965   |  |
| 1/4"-20  | HWH              | 515     | 700                                     | 980     | 515          | 700     | 980     | 1,030       | 1,405   | 1,965   | 1,030       | 1,405   | 1,965   |  |

- 1. Ultimate strengths are based on calculations in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Ultimate load capacities must be reduced by a minimum safety factor to determine allowable loads (ASD) or by a load resistance factor to determine strength design capacities (LRFD).



# Allowable (ASD) Shear (Bearing) Capacity of Screw Connections in Aluminum, lbf 123,456

|          |                  |               | Aluminum Thickness (Lapped Sheets/Bars) |              |         |         |         |             |         |             |         |         |         |  |
|----------|------------------|---------------|-----------------------------------------|--------------|---------|---------|---------|-------------|---------|-------------|---------|---------|---------|--|
| Diameter | Head Styles      | 1/16" - 1/16" |                                         | 1/16" - 1/8" |         |         |         | 1/8" - 1/8" |         | 1/8" - 1/4" |         |         |         |  |
|          |                  | 6063-T5       | 6063-T6                                 | 6061-T6      | 6063-T5 | 6063-T6 | 6061-T6 | 6063-T5     | 6063-T6 | 6061-T6     | 6063-T5 | 6063-T6 | 6061-T6 |  |
| #8-18    | HWH, PPH         | 115           | 155                                     | 215          | 115     | 155     | 215     | 220         | 310     | 430         | -       | -       | -       |  |
| #10-16   | HWH, PPCKH, PFH  | 130           | 180                                     | 250          | 130     | 180     | 250     | 260         | 355     | 500         | -       | -       | -       |  |
| #12-14   | HWH, PPCKH, PUFH | 150           | 205                                     | 285          | 150     | 205     | 285     | 295         | 405     | 565         | 295     | 405     | 565     |  |
| #12-24   | HWH              | 150           | 205                                     | 285          | 150     | 205     | 285     | 295         | 405     | 565         | 295     | 405     | 565     |  |
| 1/4"-14  | HWH              | 170           | 235                                     | 330          | 170     | 235     | 330     | 345         | 470     | 655         | 345     | 470     | 655     |  |
| 1/4"-20  | HWH              | 170           | 235                                     | 330          | 170     | 235     | 330     | 345         | 470     | 655         | 345     | 470     | 655     |  |

- 1. Allowable (ASD) strengths are based on a safety factor, Ω =3.00, determined in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Values are based on aluminum members with the following minimum tensile strengths: 6063-75,  $F_{u}=22$  ksi; 6063-76,  $F_{u}=30$  ksi; 6061-76,  $F_{u}=42$  ksi
- 3. The first number is the thickness of aluminum in contact with the screw head, the second number is the thickness of the aluminum not in contact with the screw head.
- 4. Allowable (ASD) Shear (Bearing) capacities for other member thicknesses may be determined by interpolating within the table.
- 5. For aluminum with the following tensile strengths: 6063-T5, Fu = 27 ksi; 6063-T6, Fu = 35 ksi; 6061-T6, Fu = 45 ksi; multiply tabulated values by 1.22, 1.16, 1.07 respectively.
- 6. For ASD shear connections, the lower of the ASD Shear (Bearing) Capacity and the ASD Fastener Shear Strength must be used for design.

# Design (LRFD) Shear (Bearing) Capacity of Screw Connections in Aluminum, lbf 123,45.6

|          |                  | Aluminum Thickness (Lapped Sheets/Bars) |         |              |         |         |             |         |         |             |         |         |         |
|----------|------------------|-----------------------------------------|---------|--------------|---------|---------|-------------|---------|---------|-------------|---------|---------|---------|
| Diameter | Head Styles      | 1/16" - 1/16"                           |         | 1/16" - 1/8" |         |         | 1/8" - 1/8" |         |         | 1/8" - 1/4" |         |         |         |
|          |                  | 6063-T5                                 | 6063-T6 | 6061-T6      | 6063-T5 | 6063-T6 | 6061-T6     | 6063-T5 | 6063-T6 | 6061-T6     | 6063-T5 | 6063-T6 | 6061-T6 |
| #8-18    | HWH, PPH         | 170                                     | 230     | 325          | 170     | 230     | 325         | 335     | 460     | 645         | -       | -       | -       |
| #10-16   | HWH, PPCKH, PFH  | 195                                     | 265     | 375          | 195     | 265     | 375         | 390     | 535     | 750         | -       | -       | -       |
| #12-14   | HWH, PPCKH, PUFH | 225                                     | 305     | 425          | 225     | 305     | 425         | 445     | 610     | 850         | 445     | 610     | 850     |
| #12-24   | HWH              | 225                                     | 305     | 425          | 225     | 305     | 425         | 445     | 610     | 850         | 445     | 610     | 850     |
| 1/4"-14  | HWH              | 260                                     | 350     | 490          | 260     | 350     | 490         | 515     | 705     | 985         | 515     | 705     | 985     |
| 1/4"-20  | HWH              | 260                                     | 350     | 490          | 260     | 350     | 490         | 515     | 705     | 985         | 515     | 705     | 985     |

- 1. Design (LRFD) strengths are based on a safety factor,  $\phi$  =0.50, determined in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Values are based on aluminum members with the following minimum tensile strengths: 6063-T5,  $F_u = 22$  ksi; 6063-T6,  $F_u = 30$  ksi; 6061-T6,  $F_u = 42$  ksi
- 3. The first number is the thickness of aluminum in contact with the screw head, the second number is the thickness of the aluminum not in contact with the screw head.
- 4. Design (LRFD) Shear (Bearing) capacities for other member thicknesses may be determined by interpolating within the table.
- 5. For aluminum with the following tensile strengths: 6063-T5,  $F_u = 27$  ksi; 6063-T6,  $F_u = 35$  ksi; 6061-T6,  $F_u = 45$  ksi; multiply tabulated values by 1.22, 1.16, 1.07 respectively.
- 6. For LRFD shear connections, the lower of the LRFD Shear (Bearing) Capacity and the LRFD Fastener Shear Strength must be used for design.

## Ultimate, Allowable (ASD), and Design (LRFD) Tension Pull-Out Capacity of Screw Connections in Aluminum, Ibf12.3.45.87

|          |            |          |      | 6063-T5 / | Aluminum |      |       |
|----------|------------|----------|------|-----------|----------|------|-------|
| Diameter | Point Type |          | 1/8" |           |          | 1/4" |       |
|          |            | Ultimate | ASD  | LRFD      | Ultimate | ASD  | LRFD  |
| #8-18    | #2         | 730      | 245  | 365       | -        | -    | -     |
| #10-16   | #2         | 810      | 270  | 405       | =        | -    | -     |
| #10-16   | #3         | 785      | 260  | 390       | -        | -    | -     |
| #12-14   | #2         | 920      | 305  | 460       | -        | -    | -     |
| #12-14   | #3         | 795      | 265  | 395       | -        | -    | -     |
| #12-24   | #5         | 440      | 145  | 220       | 1,625    | 540  | 815   |
| 1/4"-14  | #2         | 1,065    | 355  | 535       | -        | -    | -     |
| 1/4"-20  | #3         | 845      | 280  | 420       | 2,270    | 755  | 1,135 |
| 1/4"-20  | #5         | 490      | 165  | 245       | 1,405    | 470  | 700   |

- 1. Ultimate strengths are based on laboratory tests. Allowable (ASD) and Design (LRFD) capacities are based on a safety factor,  $\Omega = 3.00$ , and a resistance factor,  $\phi = 0.50$ , respectively.
- 2. Ultimate load capacities must be reduced by a minimum safety factor to determine allowable loads (ASD) or by a load resistance factor to determine strength design capacities (LRFD).
- 3. Allowable (ASD) and Design (LRFD) capacities are based on 6063-T5 aluminum members with a minimum tensile strength of  $F_u = 22 \ ksi$ .
- 4. Allowable (ASD) and Design (LRFD) load capacities for other member thicknesses can be determined by interpolating within the table.
- 5. For ASD tension connections, the lower of the ASD tension strength, ASD pull-out strength and ASD pull-over strength must be used for design.
- 6. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.
- 7. For aluminum with a minimum tensile strength  $F_u \ge 27$  ksi, multiply tabulated values by 1.22.



## **Ultimate Pull-Over Capacity of Screw Connections in Aluminum, lbf**<sup>1,2</sup>

|          |             |                  |         | Minimun | Thickness of | Aluminum in C    | ontact with Sc   | rew Head |         |         |
|----------|-------------|------------------|---------|---------|--------------|------------------|------------------|----------|---------|---------|
| Diameter | Head Styles |                  | 1/32"   |         |              | 1/16"            |                  |          | 1/8"    |         |
|          |             | 6063- <b>T</b> 5 | 6063-T6 | 6061-T6 | 6063-T5      | 6063- <b>T</b> 6 | 6061- <b>T</b> 6 | 6063-T5  | 6063-T6 | 6061-T6 |
| #8 - 18  | HWH         | 190              | 300     | 425     | 440          | 685              | 965              | 1,095    | 1,710   | 2,395   |
| #8 - 18  | PPH         | 180              | 285     | 400     | 420          | 655              | 915              | 1,050    | 1,645   | 2,300   |
| #10 - 16 | HWH         | 225              | 350     | 495     | 505          | 790              | 1,105            | 1,225    | 1,910   | 2,680   |
| #10 - 16 | PPCKH       | 245              | 380     | 535     | 540          | 845              | 1,185            | 1,295    | 2,030   | 2,840   |
| #10 - 16 | PPH         | 205              | 325     | 455     | 470          | 735              | 1,030            | 1,155    | 1,805   | 2,525   |
| #12 - 14 | HWH         | 230              | 365     | 510     | 520          | 810              | 1,140            | 1,255    | 1,960   | 2,745   |
| #12 - 24 | HWH         | 230              | 365     | 510     | 520          | 810              | 1,140            | 1,255    | 1,960   | 2,745   |
| #12 - 14 | PPCKH       | 245              | 380     | 535     | 540          | 845              | 1,185            | 1,295    | 2,030   | 2,840   |
| 1/4 - 14 | HWH         | 275              | 430     | 605     | 605          | 945              | 1,325            | 1,425    | 2,225   | 3,115   |
| 1/4 - 20 | HWH         | 275              | 430     | 605     | 605          | 945              | 1,325            | 1,425    | 2,225   | 3,115   |

- 1. Ultimate strengths are based on calculations in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Ultimate load capacities must be reduced by a minimum safety factor to determine allowable loads (ASD) or by a load resistance factor to determine strength design capacities (LRFD).

# Allowable (ASD) Pull-Over Capacity of Screw Connections in Aluminum, lbf1.2.3.4.5.6

|          |             |         |         | Minimun | 1 Thickness of   | Aluminum in C | ontact with Sc | rew Head         |         |         |
|----------|-------------|---------|---------|---------|------------------|---------------|----------------|------------------|---------|---------|
| Diameter | Head Styles |         | 1/32"   |         |                  | 1/16"         |                | 1/8"             |         |         |
|          |             | 6063-T5 | 6063-T6 | 6061-T6 | 6063- <b>T</b> 5 | 6063-T6       | 6061-T6        | 6063- <b>T</b> 5 | 6063-T6 | 6061-T6 |
| #8 - 18  | HWH         | 65      | 100     | 140     | 145              | 230           | 320            | 365              | 570     | 800     |
| #8 - 18  | PPH         | 60      | 95      | 135     | 140              | 220           | 305            | 350              | 550     | 770     |
| #10 - 16 | HWH         | 75      | 120     | 165     | 170              | 265           | 370            | 410              | 640     | 895     |
| #10 - 16 | PPCKH       | 80      | 130     | 180     | 180              | 285           | 395            | 435              | 675     | 945     |
| #10 - 16 | PPH         | 70      | 110     | 150     | 155              | 245           | 345            | 385              | 600     | 840     |
| #12 - 14 | HWH         | 80      | 120     | 170     | 175              | 270           | 380            | 420              | 655     | 915     |
| #12 - 24 | HWH         | 80      | 120     | 170     | 175              | 270           | 380            | 420              | 655     | 915     |
| #12 - 14 | PPCKH       | 80      | 130     | 180     | 180              | 285           | 395            | 435              | 675     | 945     |
| 1/4 - 14 | HWH         | 90      | 145     | 200     | 200              | 315           | 440            | 475              | 740     | 1,040   |
| 1/4 - 20 | HWH         | 90      | 145     | 200     | 200              | 315           | 440            | 475              | 740     | 1,040   |

- 1. Allowable strengths are based on a safety factor,  $\Omega = 3.00$ , determined in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Values are based on aluminum members with the following minimum yield strengths: 6063-T5,  $F_y=16$  ksi; 6063-T6,  $F_y=25$  ksi; 6061-T6,  $F_y=35$  ksi
- 3. Allowable (ASD) pull-over capacities for other member thicknesses may be determined by interpolating within the table.
- 4. For aluminum with the following yield strengths: 6063-T5, Fy = 21 ksi; 6063-T6, Fy = 31 ksi; 6061-T6, Fy = 40 ksi; multiply tabulated values by 1.31, 1.24, 1.14 respectively.
- 5. Tabulated pull over capacities are applicable to aluminum that has been self drilled by the screw fastener and for pre-drilled aluminum members with clearance holes sizes of 0.177, 0.201, 0.228 and 0.266 for #8, #10, #12 and 1/4" screws, respectively.
- 6. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.

# **Design (LRFD) Pull-Over Capacity of Screw Connections in Aluminum, lbf**<sup>1,2,3,4,5,6</sup>

|          |             |         |         | Minimun | 1 Thickness of | Aluminum in C | ontact with Sc | rew Head |         |         |
|----------|-------------|---------|---------|---------|----------------|---------------|----------------|----------|---------|---------|
| Diameter | Head Styles |         | 1/32"   |         |                | 1/16"         |                |          | 1/8"    |         |
|          |             | 6063-T5 | 6063-T6 | 6061-T6 | 6063-T5        | 6063-T6       | 6061-T6        | 6063-T5  | 6063-T6 | 6061-T6 |
| #8 - 18  | HWH         | 95      | 150     | 215     | 220            | 345           | 485            | 550      | 855     | 1,200   |
| #8 - 18  | PPH         | 90      | 145     | 200     | 210            | 330           | 460            | 525      | 825     | 1,150   |
| #10 - 16 | HWH         | 115     | 175     | 250     | 255            | 395           | 555            | 615      | 955     | 1,340   |
| #10 - 16 | PPCKH       | 125     | 190     | 270     | 270            | 425           | 595            | 650      | 1,015   | 1,420   |
| #10 - 16 | PPH         | 105     | 165     | 230     | 235            | 370           | 515            | 580      | 905     | 1,265   |
| #12 - 14 | HWH         | 115     | 185     | 255     | 260            | 405           | 570            | 630      | 980     | 1,375   |
| #12 - 24 | HWH         | 115     | 185     | 255     | 260            | 405           | 570            | 630      | 980     | 1,375   |
| #12 - 14 | PPCKH       | 125     | 190     | 270     | 270            | 425           | 595            | 650      | 1,015   | 1,420   |
| 1/4 - 14 | HWH         | 140     | 215     | 305     | 305            | 475           | 665            | 715      | 1,115   | 1,560   |
| 1/4 - 20 | HWH         | 140     | 215     | 305     | 305            | 475           | 665            | 715      | 1,115   | 1,560   |

- 1. Design (LRFD) strengths are based on a resistance factor,  $\phi = 0.50$ , determined in accordance with the Aluminum Design Manual, AA ADM1-2015.
- 2. Values are based on aluminum members with the following minimum yield strengths: 6063-T5,  $F_y = 16$  ksi; 6063-T6,  $F_y = 25$  ksi; 6061-T6,  $F_y = 35$  ksi
- 3. Design (LRFD) pull-over capacities for other member thicknesses may be determined by interpolating within the table.
- 4. For aluminum with the following yield strengths: 6063-T5, Fy = 21 ksi; 6063-T6, Fy = 31 ksi; 6061-T6, Fy = 40 ksi; multiply tabulated values by 1.31, 1.24, 1.14 respectively.
- 5. Tabulated pull over capacities are applicable to aluminum that has been self drilled by the screw fastener and for pre-drilled aluminum members with clearance holes sizes of 0.177, 0.201, 0.228 and 0.266 for #8, #10, #12 and 1/4" screws, respectively.
- 6. For LRFD tension connections, the lower of the LRFD tension strength, LRFD pull-out strength and LRFD pull-over strength must be used for design.









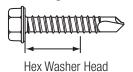
# **ORDERING INFORMATION**

## **Bi-Flex Self-Drilling Structural Screws**

| Cat. No. ⁵  | Description<br>(Diameter- TPI x<br>Nominal Length) | Point Type | Finish          | Maximum<br>Load-Bearing<br>Length <sup>1</sup><br>(in.) | Minimum<br>Protrusion<br>Length <sup>2</sup><br>(in.) | Nominal Head<br>Diameter <sup>a</sup><br>(in.) | Nominal Head<br>Height'<br>(in.) | Qty / Carton |
|-------------|----------------------------------------------------|------------|-----------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------|--------------|
|             | •                                                  |            | #8 Diamete      | r, 1/4" Hex Washer                                      | ` '                                                   |                                                | ı                                |              |
| EAJ100      | #8-18 X 3/4"                                       | #2         | Stalgard GB     | 0.156                                                   | 19/32"                                                | 0.335                                          | 0.140                            | 5,000        |
| EAJ102      | #8-18 X 1"                                         | #2         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.335                                          | 0.140                            | 5,000        |
|             |                                                    |            | <u> </u>        | er, #2 Phillips Pan                                     |                                                       |                                                |                                  |              |
| EAX100      | #8-18 X 3/4"                                       | #2         | Stalgard GB     | 0.156                                                   | 19/32"                                                | 0.315                                          | 0.110                            | 5,000        |
| EAX102      | #8-18 X 1"                                         | #2         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.315                                          | 0.110                            | 5,000        |
|             |                                                    |            | #10 Diamete     | r, 5/16" Hex Washe                                      | r Head                                                |                                                |                                  |              |
| EAJ110      | #10-16 X 3/4"                                      | #2         | Stalgard GB     | 0.250                                                   | 1/2"                                                  | 0.400                                          | 0.160                            | 5,000        |
| EAJ120      | #10-16 X 1"                                        | #2         | Stalgard GB     | 0.500                                                   | 1/2"                                                  | 0.400                                          | 0.160                            | 5,000        |
| EAJ140      | #10-16 X 1-1/2"                                    | #2         | Stalgard GB     | 1.000                                                   | 1/2"                                                  | 0.400                                          | 0.160                            | 2,500        |
|             | •                                                  |            | #10 Diame       | ter, #2 Phillips Pan                                    | Head                                                  | •                                              | •                                |              |
| EAX110      | #10 - 16 x 3/4"                                    | #2         | Stalgard GB     | 0.250                                                   | 1/2"                                                  | 0.365                                          | 0.130                            | 5,000        |
| EAX120      | #10 - 16 x 1"                                      | #2         | Stalgard GB     | 0.500                                                   | 1/2"                                                  | 0.365                                          | 0.130                            | 5,000        |
|             |                                                    |            | #10 Diameter    | , #2 Phillips Pancal                                    | ke Head                                               |                                                |                                  |              |
| EBN300      | #10 - 16 x 1"                                      | #2         | Stalgard GB     | 0.500                                                   | 1/2"                                                  | 0.435                                          | 0.075                            | 4,000        |
|             |                                                    |            | #12 Diamete     | r, 5/16" Hex Washe                                      | er Head                                               |                                                |                                  |              |
| EAJ185      | #12 - 14 x 1"                                      | #2         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 3,000        |
| EAJ190      | #12 - 14 x 1"                                      | #3         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 4,000        |
| EAJ200      | #12 - 14 x 1-1/4"                                  | #3         | Stalgard GB     | 0.656                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 2,500        |
| EAJ215      | #12 - 14 x 1-1/2"                                  | #2         | Stalgard GB     | 0.906                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 2,500        |
| EAJ220      | #12 - 14 x 1-1/2"                                  | #3         | Stalgard GB     | 0.906                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 2,500        |
| EAJ320      | #12 - 24 x 1-1/2"                                  | #5         | Stalgard GB     | 0.500                                                   | 1"                                                    | 0.415                                          | 0.200                            | 2,500        |
| EAJ240      | #12 - 14 x 2"                                      | #2         | Stalgard GB     | 1.406                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 1,500        |
| EAJ340      | #12 - 24 x 2"                                      | #5         | Stalgard GB     | 1.000                                                   | 1"                                                    | 0.415                                          | 0.200                            | 2,000        |
| EAJ260      | #12 - 14 x 2-1/2"                                  | #3         | Stalgard GB     | 1.906                                                   | 19/32"                                                | 0.415                                          | 0.200                            | 1,000        |
|             |                                                    |            | #12 Diameter, # | 3 Phillips Undercut                                     | Flat Head                                             |                                                |                                  |              |
| EBN200      | #12 - 14 x 1"                                      | #2         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.415                                          | 0.090                            | 4,000        |
| EBN220      | #12 - 14 x 1-1/4"                                  | #2         | Stalgard GB     | 0.656                                                   | 19/32"                                                | 0.415                                          | 0.090                            | 2,500        |
| EBN240      | #12 - 14 x 1-1/2"                                  | #2         | Stalgard GB     | 0.906                                                   | 19/32"                                                | 0.415                                          | 0.090                            | 2,500        |
|             |                                                    |            | #12 Diameter    | , #2 Phillips Pancal                                    | ke Head                                               |                                                |                                  |              |
| EBN320      | #12 - 14 X 1"                                      | #3         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.435                                          | 0.075                            | 4,000        |
|             |                                                    |            |                 | er, 3/8" Hex Washe                                      |                                                       |                                                |                                  |              |
| EAJ415      | 1/4" - 14 x 1"                                     | #2         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 2,500        |
| EAJ540      | 1/4" - 20 x 1"                                     | #3         | Stalgard GB     | 0.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 2,500        |
| EAJ430      | 1/4" - 14 x 1-1/2"                                 | #2         | Stalgard GB     | 0.906                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 1,000        |
| EAJ580      | 1/4" - 20 x 1-1/2"                                 | #3         | Stalgard GB     | 0.906                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 1,000        |
| EAJ600      | 1/4" - 20 x 1-1/2"                                 | #5         | Stalgard GB     | 0.500                                                   | 1"                                                    | 0.500                                          | 0.250                            | 1,000        |
| EAJ445      | 1/4" - 14 x 2"                                     | #2         | Stalgard GB     | 1.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 1,500        |
| EAJ610      | 1/4" - 20 x 2"                                     | #3         | Stalgard GB     | 1.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 1,500        |
| EAJ615      | 1/4" - 20 x 2"                                     | #5         | Stalgard GB     | 1.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 1,500        |
| EAJ640      | 1/4" - 20 x 2-1/2"                                 | #3         | Stalgard GB     | 1.906                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 1,000        |
| EAJ650 [6]  | 1/4" - 20 x 3"                                     | #3         | Stalgard GB     | 2.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 500          |
| EAJ630      | 1/4" - 20 x 3"                                     | #5         | Stalgard GB     | 2.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 500          |
| EAJ660 [6]  | 1/4" - 20 x 4"                                     | #3         | Stalgard GB     | 3.406                                                   | 19/32"                                                | 0.500                                          | 0.250                            | 500          |
| EAJ670      | 1/4" - 20 x 4"                                     | #5         | Stalgard GB     | 3.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 500          |
| EAJ675 [7]  | 1/4" - 20 x 5"                                     | #5         | Stalgard GB     | 4.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 250          |
| EAJ680 [7]  | 1/4" - 20 x 6"                                     | #5         | Stalgard GB     | 5.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 250          |
| EAJ690C [8] | 1/4" - 20 x 8"                                     | #5         | Stalgard GB     | 7.000                                                   | 1"                                                    | 0.500                                          | 0.250                            | 150          |
|             |                                                    |            |                 | 3 Phillips Undercut                                     |                                                       |                                                |                                  |              |
| EBN630 [9]  | 1/4" - 20 x 3"                                     | #3         | Stalgard GB     | 2.406                                                   | 19/32"                                                | 0.480                                          | 0.100                            | 500          |
| EBN640 [9]  | 1/4" - 20 x 4"                                     | #3         | Stalgard GB     | 3.406                                                   | 19/32"                                                | 0.480                                          | 0.100                            | 500          |

- 1. The Maximum Load Bearing Length is calculated by subtracting the Minimum Protrusion Length from the Nominal Length of the fastener.
- 2. Minimum Protrusion Length is the length that allows the hardened steel tip and lead threads to protrude out of the back side of the supporting material.
- 3. Nominal head diameter is the diameter of the integral washer on hex washer head fasteners.
- 4. Nominal head height includes the thickness of the integral washer on hex washer head fasteners.
- 5. Unless otherwise noted, all fasteners are fully threaded. Usable thread length is equal to the maximum load bearing length.
- 6. Partially threaded fastener with a usable thread length of 1.60".
- Partially threaded fastener with a usable thread length of 2.60".
- 8. Partially threaded fastener with a usable thread length of 2.15".
- 9. Partially threaded fastener with a usable thread length of 1.35".

©2021 ELCO - REV. A




**Bi-Flex Self-Drilling Structural Screws for Wood-to-Metal Applications** 

| Cat. No. <sup>3</sup> | Description<br>(Diameter- TPI x<br>Nominal Length) | Point Type | Finish                 | Maximum Load-<br>Bearing Length <sup>†</sup><br>(in.) | Minimum<br>Protrusion<br>Length²<br>(in.) | Nominal Head<br>Diameter<br>(in.) | Qty / Carton |
|-----------------------|----------------------------------------------------|------------|------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------|--------------|
|                       |                                                    | #10        | Diameter, #2 Phillips  | Flat Head with Wings                                  |                                           |                                   |              |
| EBN140                | #10 - 16 x 1-1/2"                                  | #3         | Stalgard GB            | 0.813                                                 | 11/16"                                    | 0.370                             | 3,500        |
|                       |                                                    | #12        | Diameter, #3 Phillips  | Flat Head with Wings                                  |                                           |                                   |              |
| EBN345                | #12 - 24 x 2-13/16"                                | #5         | Stalgard GB            | 1.563                                                 | 1-1/4"                                    | 0.415                             | 1,000        |
|                       |                                                    | #8 D       | iameter, #3 Phillips I | Flat Head with Wings                                  |                                           |                                   |              |
| EBN645                | 1/4" - 20 x 2-13/16"                               | #5         | Stalgard GB            | 1.563                                                 | 1-1/4"                                    | 0.480                             | 1,000        |

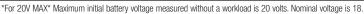
- 1. The Maximum Load Bearing Length is calculated by subtracting the Minimum Protrusion Length from the Nominal Length of the fastener.
- 2. Minimum Protrusion Length is the length that allows the hardened steel tip and lead threads to protrude out of the back side of the supporting material.
- 3. Unless otherwise noted, all fasteners are fully threaded. Usable thread length is equal to the maximum load bearing length.

## **Load Bearing Area**










ead Undercut Flat and Flat Head

Pancake Head

# **Screwguns**

| Cat. No. | Description                                               | Screw Diameter |
|----------|-----------------------------------------------------------|----------------|
| DW268    | 2,500 RPM VSR VERSA-CLUTCH™ Screwgun                      | #8 & #10       |
| DW267    | 2,000 RPM VSR VERSA-CLUTCH™ Screwgun                      | #12 & 1/4"     |
| DW269    | 1,000 RPM VSR VERSA-CLUTCH™ Screwgun                      | 5/16"          |
| DCF622M2 | 20V MAX* XR® VERSA-CLUTCH™ Adjustable Torque Screwgun Kit | #8-1/4"        |



Fasteners must be installed perpendicular to the work surface using a maximum 2500 RPM screw gun with a torque sensing nose piece.

Guidance on installation RPM of particular screw diameters can be found on page 2.

Impact tools are not recommended for the installation of Bi-Flex fasteners.



## **Accessories**

| Cat. No.    | Description                    |
|-------------|--------------------------------|
| DW2046      | 2" Bit Tip Holder              |
| DWA1PH2IR2  | #2 Phillips Bit Tip (2 Pack)   |
| DWA1PH3IR2  | #3 Phillips Bit Tip (2 Pack)   |
| DW2219IR    | 5/16" Impact Ready® Nut Driver |
| DW2223IR    | 3/8" Impact Ready® Nut Driver  |
| DWA2SLS30   | Screwdriving Set               |
| DWA2FTS25IR | Screwdriving Set               |

