

ICC-ES Listing Report

ELC-4027

Reissued July 2022

This listing is subject to renewal July 2023.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

CSI: DIVISION: 03 00 00—CONCRETE

Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00-METALS

Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured product, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

Product: AC200+™ Adhesive Anchor System in Cracked and Uncracked Concrete

Listee: **DEWALT**

Compliance with the following standards:

Annex D, Anchorage, of CSA A23.3-14, Design of Concrete Structures, CSA Group.

Compliance with the following codes:

AC200+™ adhesive anchor system in cracked and uncracked concrete, as described in this listing report, are in conformance with CSA A23.3-14, Annex D, as referenced in the applicable section of the following code edition:

■ National Building Code of Canada® 2015 Applicable Section: Division B, Part 4, Section 4.3.3.

Description of adhesive anchor system:

The AC200+ adhesive anchor system comprised of AC200+ two-component adhesive filled in cartridges, static mixing nozzles, dispensing tools, hole cleaning equipment, and adhesive injection accessories. The AC200+ adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars. The primary components of the AC200+ adhesive anchor system, including the AC200+ adhesive cartridge, static mixing nozzle, and steel anchor elements, are shown in Figure 1.

FIGURE 1—AC200+ ADHESIVE ANCHOR SYSTEM INCLUDING TYPICAL STEEL ANCHOR ELEMENTS

AC200+ adhesive two components are kept separate by means of a labelled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by DEWALT, which is attached to the cartridge. AC200+ is available in 9.5-ounce (280 mL) and 28-ounce (825 mL) cartridges. Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark, and cool environment.

Standard hole cleaning equipment and dust extraction system equipment (i.e. suction, vacuum) are available from the report holder.

Standard hole cleaning equipment used after drilling is comprised of steel wire brushes supplied by DEWALT and compressed air nozzle (applicable for post-installed adhesive anchor system). Standard hole cleaning equipment is shown in Figure 3.

The DustX+™ extraction system automatically cleans the holes during drilling using hollow drill bits with a carbide head meeting the requirements of ANSI B212.15 and a DEWALT DWV012 / DWV902M vacuum equipped with an automatic filter cleaning system or equivalent approved by DEWALT (applicable for postinstalled adhesive anchor system). After drilling with the DustX+ system, no future hole cleaning is required. See Figure 2 for an illustration of the DustX+™ extraction system.

AC200+ adhesive must be dispensed with manual dispensers, pneumatic dispensers, or electric powered dispensers supplied by DEWALT.

Identification:

- AC200+ adhesive is identified by packaging labelled with the company's name (DEWALT) and address, anchor name, the lot number, the expiration date, listing report number (ELC-4027), and the ICC-ES listing mark. Threaded rods, nuts, washers, and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this report or equivalent.
- The report holder's contact information is the following:

DEWALT 701 EAST JOPPA ROAD TOWSON, MARYLAND 21286 (800) 524-3244 www.DEWALT.com anchors@DEWALT.com

Installation:

The installation parameters are illustrated in Figure 4 and Table 1. Installation of the AC200+ adhesive anchor system must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 3.

The adhesive anchor system may be used for upwardly inclined orientation applications (e.g. overhead). Upwardly included and horizontal orientation applications are to be installed using piston plugs for the ⁵/₈-inch through 1¹/₄-inch (M16 through M30) diameter threaded steel rods and No. 5 through No. 10 (14 mm through 32 mm) steel reinforcing bars, installed in the specified hole diameter, and attached to the mixing nozzle and extension tube supplied by DEWALT as described in Figure 3 in this report. Upwardly included and horizontal orientation installation for the 3/8-inch and 1/2-inch (M10 and M12) diameter threaded steel rods, and No. 3 and No. 4 (10 mm and 12 mm) steel reinforcing bars may be injected directly to the end of the hole using extension tubing attached to the mixing nozzle with a hole depth $h_0 \le 10$ " (250 mm).

Installation of anchors in horizontal or upwardly inclined orientations shall be fully restrained from movement throughout the specified curing period through the use of temporary wedges, external supports, or other methods. Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance.

The DEWALT drilling systems in Figure 2 collect and remove dust with a HEPA dust extractor during the hole drilling operation in dry base materials using hammer-drills (see Step 1 of the manufacturer's published installation instructions in Figure 3).

(+30°C)

ಕ

2

ů

(† 46

<u>ೆ</u>

30 mins 30 mins 40 mins

3.5 hrs

1 hrs

2 hrs

24 hrs

5 hrs

-

Setting instructions for Adhesive Anchors and Post-installed Rebar Connections in solid base material

element (see Table III). Tolerances of carbide drill bits including hollow drill bits must carbide drill bit to the size and embedment required by the selected steel hardware Drill a hole into the base material with rotary hammer drill (i.e. percussion drill) and a

Ö

Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. For embedment depths greater than 7-1/2" an extension tube supplied by DEWALT must be used with the mixing nozzle if the

: Wear suitable eye and skin protection. Avoid inhalation of dusts during

meet ANSI Standard B212.

may

Threaded Rod [inch] Standard hole cleaning / piston plug info (fractional sizes)¹ Rebar #3 # è Drill bit -444 7/8 3 ġ è. Brush ġ 0.846 0.978 1.122 1.252 0.582 0.654 0.720 0.787 amanana PFC1871056 PFC1871106 PFC18711106 PFC1871202 PFC1871202 PFC1871203 PFC1871203 PFC1871301 PFC1871301 PFC1871301 Cat.# I

ally clean the hole	Note for Tables 3a and 3b: if the DEV/ALT DustX+ extraction system is used to automatically clean the holes during drilling, standard note cleaning (brushing and blowing following drilling) is not required.	- #10 11/2 41.4 1.630 PFC167
10 1.3	natically clean the hole	PFC1671500 1-1/2" 08309-PWR PFC1691570
		Γ

Adhesive Anchor property / setting information (fractional and metric sizes)

Nominal threaded rod (fractional)

Nominal Anchor Size

3/8" 0.375

 $m_{ex} = Maximum torque$

ورسه = Minimum embedment (d_{bit}) = Nominal ANSI drill bit size

2-3/8 7/18 15⁽¹⁾

2-3/4 3-1/8 9/16 30 0.500

11/16 0.625 4

8

98

147 1-1/8 1.00

22

20

13 6

8 8

5/8 8

44 3/4 7/8 8 88

147 1-3/8 8 1-1/8 悲

221 1-1/2

80 20

120 25 1,2 #

Units: #5 /

Ø10 4 9/16" ä 10M Ø12 á 6

Units: mm, N-m Ø14 15M Ø16 20M Ø20 14 15 16 20

Ø25 25M 32

30M

32

Reinforcing bar (metric)

0.750

inch, ft.-lb. 3/4" 7/8" 1" 1-1/4"

Nominal threaded rod (metric)
Units: mm, N-m
M10 M12 M16 M20 M24 M27 M30
10 12 16 20 24 27 30

Reinforcing bar (fractional)

Units: inch, ft.-lb.

#4 #5 #6 #7 #8 #6

#4 5 58 3/4 7/8 1 1-1/

= Maximum embedment

-						4444			parara	rener	Manage			
	Piston	Cat.#	*	Threaded	Rebar	d ₀ , Drill bit - Ø	bit - Ø	d. Brush - Ø	sh - Ø	# te)	Ħ:	Piston	# #c	Ħ:
	Bnld	_		Rod	EU CA	EU CA	CA	eg, cro	21.0	EU I CA	CA.	plug	EU I CA	C A
	(size)	oranidard	Telliuli	[mm]	[mm]	[mm]	[inch]	[mm]	[inch]	-0	:	(size)	-01	;
)50				M10		12		13.5	0.53	DFC1670120			Distanchina	
8		Piston plugs		M12	10 10M	14	9/16	15.5	0.61	DFC1670140 PFC1671150	PFC1671150		not required	
150		not required	_		12	16		17.5	0.69	DFC1670160			- redomes	
200					15M		3/4	18	0.75	PFC1671250		3/4"	,	08259-PWR
25	11/16"	08258-PWR		M16	14	3		20	0.79	DFC1670180	,	18mm	DFC1690100	
250	3/4"	08259-PWR PFC168152	FC1691520		16	20		22	0.87	DFC1670190		20mm	DFC1690150	
900	7/8"	08300-PWR PFC1691530	FC1691530	M20		22		24	0.84	DFC1670220	,	22mm	DFC1690180	
350	4	08301-PWR PFC168154	FC1681540		20 20M	25	_	27	1.06	DFC1670240 PFC1671350 25mm 1"	PFC1671350	_	DFC1690250	08301-PWR
900	1-1/8"	08303-PWR PFC1691550	FC1691550	M24		28		30	1.18	DFC1670280	,	28mm	DFC1690300	,
150	1-3/8"	1-3/8" 08305-PWR PFC169156	FC1691560	M27		30		31.8	1.25	DFC1670310		30mm	DFC1690310	
000	1-1/2"	1-1/2" 08309-PWR PFC1691570	FC1691570		25 25M	32	11/4	34	1.34	DFC1670320 PFC1671425 32mm 11/4"	PFC1671425		DFC1690350	08290-PWR
y dean :	the holes	y dean the holes during drilling, standard	tandard	M30	28	35		37	1.46	DFC1670330	٠	35mm	DFC1690400	
					30M	١.	11/2		1.50	PFC1691570		11/2"		08291-PWR
					32	40		43.5	1.71	DFC1670340		40mm	DFC1690420	

Standard hole cleaning / piston plug info (EU metric and

CA metric sizes)1

ΙĒ						/2	8	
nections		'n	1-3/4	2-3/8	3-5/8	15	3-1/2	
		her+ 2do	/4	2-1/2	4-1/4	17-1/2	3-1/2	
		0		2-3/4	4-3/4	20	4	
			2-3/4	2-1/2 2-3/4 3-1/4 45 45	4-3/4 5-7/8	25	5	
		her		45	50	200	60	
		her + 30	'	45	00	240	70	
				55	90	240 320 400 480 540 600	80	
		7.	45	60	100	400	90	
		her + 2do		70 75	120	480	96	
		g ₀	70	75	135	540	108	
			0	80	135 150	600	120	
22-1/2		her + 1-1/4		1-5/8 1-3/4	1-7/8 2-1/2	7-1/2	2-3/8	
30		1-1/4	Ċ	1-3/4	2-1/2	10	2-3/4	
37-1/2				2	3	12-1/2	3-1/8	
45			1-	2-3/8	3-5/8	15	3-1/2	
52-1/		her:	1-3/4	2-3/8 2-1/2 2-3/4	4-1/-	17-1/	3-1/2	
2 60		her+ 2do		2 2-3/	4-3/	2 20	2 4	
22-1/2 30 37-1/2 45 52-1/2 60 67-1/2 75 600 680 720 840 960 960 1170 1200			2-	4 3	3-5/8 4-1/4 4-3/4 5-1/4 5-7/8	7-1/2 10 12-1/2 15 17-1/2 20 22-1/2 25 200 225 240 280 320 320	2-3/8 2-3/4 3-1/8 3-1/2 3-1/2 4 4-1/2	
2 75			2-3/4	3-1/4	5-7/	2 25	5	
600						200	60	
680		her + 30		45	50	225	70	
720		ő		45	60	240	70	
840				50	70	280	75	
980					80	320	80	
960				55	80	320	80	
1170		hert		45	80	10	390 400	90
1200				0	100	400	90	
1500		+ 2do		7(12	500	100	
1510				0	5	505	100	
1680				75	140	560	112	
1795			70	70	150	000	120	
1920				85	180	640	128	

5
\triangleright
0
E P
<u>15.</u>
~
5
<u>0</u>
2
Ť
굍
₫
v
္က
÷
st-in:
U1
talle
е
Q
ă R
(D
ba
င္ပ
Ž
Э.
Ö
ë.
ž
10
ÿs
yste
ystem
E
B
E
ems and a
ems and ac
ems and acc
ems and acc
ems and access
ems and accessori
ems and access
ems and accessori

Nominal Post-installed Rebar Size min = Minimum member thickness $m_0 = Min. edge distance w/45\% T_{max}$

ofor ASTM 36 and F1554 Grade 36,

 $T_{\text{max}} = 11 \text{ ft.-lb.}$

Maximum embedment for Post-installed Rebar Connection

 $h_{ef} + 1-1/4$

 $_{\text{mb}}$ = Min. spacing $_{\text{mb}}$ = Min. edge distance w/100% T_{max}

7-1/2 1-7/8 1-5/8

2-1/2

10

1-3/4

5. Adhesive A	5. Adhesive Anchor and Post-installed Rebar Connection systems and accessories	ebar Connection systems	and accessories				
Dispensing tools		Cartridge	Extra mixing nozzles	Piston plugs	Compressed air nozzle (min. 90 psi)	SDS connector for brush	Brush extension with wood handle
10 fl. oz. manual and powered caulking guns	10 fl. oz. Cat. #08437-PW/R – Standard metal manual and powered Cat. #08479-PW/R - High performance caulking guns Cat. #DCE560D1 – Cordless battery	AC200+ 9.5 ft. oz. Quik-Shot w/nozzle	AC200+ mixing nozzle Cat. #PFC1641600	P		Cat. #PFC1671830	Cat. #PFC1671000
	Cat. #08495-PWR - Standard metal			See Table 3s or 3b for		Extension tubes for nozzles Brush extension	Brush extension
28 11. oz. manual and powered dispensers	performance ess battery	AC200+ 28 fl. oz. Dual cart. w/nozzle Cat. #PFC1271150	AC200+ mixing nozzle Cat. #PFC1641600		Note: if the back of the drilled		
	Cat. #08498 - Pneumatic				nsion	Cat. #08281 or #08297	Cat. #PFC1671820
					nozzie shall be used.	(Cat. #PFC1640600 for flex tubing)	

	\approx	
	5	
	8	
٠,		
	_	
	-	
	70	
	8	
	8	
	~	
	8	
5		
9	66	
	\simeq	
ø		
5		
	m	
а.		
D		
	8	
3	8	
	형	
ð.	20	
ą.		
3	aA	
ą.	Ð	
3	Ð	
3	Pos	
3	Pos	
3	Ð	
3	Pos	
3	Pos	
3	Road •	
3	Pos	
3	Road • To	
3	Road • Tox	
3	Road • Tow	
3	Road • Tox	
3	Road . Towson,	
3	Road . Towson,	
3	Road . Towson, N	
3	Road . Towson,	
3	Road . Towson, N	
3	Road . Towson, MD	
3	Road . Towson, MD	
3	Road . Towson, MD 21	
3	Road . Towson, MD 21	
3	Road . Towson, MD 21	
3	Road . Towson, MD 21	
3	Road . Towson, MD 21286	
3	Road • Towson, MD 2	
3	Road • Towson, MD 21286	
3	Road • Towson, MD 21286	
3	i Road • Towson, MD 21286 U	
3	i Road • Towson, MD 21286 U	
3	Road • Towson, MD 21286	

35 250 82.Ø

275

300 45

Anchor setting information:

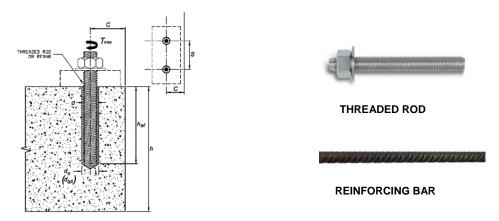


FIGURE 4—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

TABLE 1—INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than the values given in Tables 5, 8, 11 and 14, as applicable. T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INST	ALLATION TORQUE SUBJECT TO	EDGE DISTANCE	
NOMINAL ANCHOR SIZE, d	MINIMUM EDGE DISTANCE, c _{min}	MINIMUM ANCHOR SPACING, S _{min}	MAXIMUM TORQUE, T _{max}
#5 to #8 M16 to M24 Ø14to Ø25 (⁵ / ₈ in. to 1 in.) 15M to 25M	44.5 mm (1.75 in.)	5.1	0.45.7
#9 to #10 M27 to M30 ø28 to ø32 (1 ¹ / ₄ in.) 30M	70 mm (2.75 in.)	5d	0.45· T _{max}

For values of T_{max} , see Figure 2 of this report.

Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2015 NBCC must be determined in accordance with CSA A23.3-14 Annex D, and this listing report.

Design parameters are provided in Table 2 through 15 of this listing report are based on the 2015 NBCC (CSA A23.3-14). The limit states design of anchors must comply with CSA A23.3-14 D.5.1, except as required in CSA A23.3-14 D.4.3.1.

Material resistance factors must be $\phi_c = 0.65$ and $\phi_s = 0.85$ in accordance with CSA A23.3-14 Sections 8.4.2 and 8.4.3, and resistance modification factor, R, as given in CSA A23.3-14 Section D.5.3, and noted in Tables 4, 5, 7, 8, 10, 11, 13 and 14 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2015 NBCC, or Annex C of CSA A23.3-14. The nominal strength, N_{Sa} or V_{Sa} , in Tables 4, 7, and 10 of this listing report must be multiplied by ϕ_s and R to determine the factored resistance, N_{Sar} or V_{Sar} .

The bond strength must be adjusted by the permissible installation condition factors for dry concrete, R_{d} , water-saturated concrete, R_{ws} , and water-filled holes, R_{wf} , for the corresponding installation conditions as given in Tables 6, 9, 12 and 15.

For anchors to be installed in seismic regions described in NBCC 2015. The factored resistance in shear, V_{sar} , must be adjusted by $\alpha_{V,seis}$ as given in tables 4, 7, and 10 for the corresponding anchor steel. The nominal bond strength $\tau_{k,cr}$ must be adjusted by $\alpha_{N,seis}$ a as given in Tables 6, 9, 12 and 15 for threaded rods.

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL ROD MATERIALS¹

	THREADED ROD SPECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, fya	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ¹¹	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ¹²
	ASTM A193 ² Grade B7	MPa	860	720	1.19	16	50	ASTM A194 / A563 Grade DH
	ASTM A36 ³ / F1554 ⁴ , Grade 36	MPa	400	250	1.61	23	40	ASTM A194 / A563 Grade A
بے	ASTM F1554 ⁴ Grade 55	MPa	515	380	1.36	23	40	Grade A
STEEL	ASTM F1554 ⁴ Grade 105	MPa	860	725	1.19	15	45	
S NOS	ASTM A449 ⁵ (3/8" to1" dia.)	MPa	830	635	1.30	14	35	ASTM A194 / A563 Grade DH
CARBON	ASTM A449 ⁵ (1-1/4" dia.)	MPa	720	560	1.30	14	35	
	ASTM F568M ⁶ Class 5.8 (equivalent to ISO 898-1)	MPa	500	400	1.25	10	35	A563 Grade DH DIN 934 (8-A2K) ¹³
	ISO 898-17 Class 5.8	MPa	500	400	1.25	22	-	EN ISO 4032 Grade 6
	ISO 898-17 Class 8.8	MPa	800	640	1.25	12	52	EN ISO 4032 Grade 8
	ASTM F593 ⁸ CW1 ³ / ₈ to ⁵ / ₈ in.	MPa	690	450	1.54	20	-	ASTM F594 Alloy
STEEL	ASTM F593 ⁸ CW2 ³ / ₄ to 1 ¹ / ₄ in.	MPa	590	310	1.89	25	-	Group 1, 2 or 3
SS	ASTM A193/A193M ⁹ Grade B8/B8M2, Class 2B	MPa	655	515	1.27	25	40	ASTM A194/A194M
STAINLE	ISO 3506-1 ¹⁰ A4-70 M10-M24	MPa	700	450	1.56	40	-	EN ISO 4032
	ISO 3506-1 ¹⁰ A4-50 M27-M30	MPa	500	210	2.38	40	-	EN ISO 4032

Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS1

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, futa	MINIMUM SPECIFIED YIELD STRENGTH, fya
ASTM A615 ¹ , A767 ³ , A996 ⁴ Grade 60	MPa	620	414
ASTM A706 ² , A767 ³ Grade 60	MPa	550	414
ASTM A615 ¹ , Grade 40	MPa	415	275
DIN 488 ⁵ , BSt 500	MPa	550	500
CAN/CSA-G30.18 ⁶ , Grade 400	MPa	540	400

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

³Standard Specification for Carbon Structural steel

⁴Standard Specification for Anchor Bolts, Steel 36, 55 and 105-ksi Yield Strength

⁵Standard Specification for Hex Cap Screws, Bolts and Studs, Heat Treated, 827/724/345 MPa Minimum Tensile Strength, General Use.

⁶Standard Specification for Carbon and Alloy Steel external Threaded Metric Fasteners

⁷Mechanical Properties of Fasteners Made of Carbon Steel and Alloy Steel - Part 1: Bolts, Screws and Studs

⁸Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

⁹Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications.

¹⁰Mechanical properties of corrosion-resistant stainless steel fasteners - Part 1: Bolts, Screws and Studs

¹¹Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

¹²Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. ¹³Nuts for metric rods.

¹⁴Minimum percent reduction of area not reported in the referenced standard.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.

³Standard Specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

⁴Standard Specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

⁵Reinforcing steel, reinforcing steel bars; dimensions and masses

⁶Billet-Steel Bars for Concrete Reinforcement.

TABLE 4—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD1

						Nominal	Rod Diame	ter (inch)		
DESIGN INFO	DRMATION	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
Threaded rod	O.D.	d	mm (inch)	9.5 (0.375)	12.7 (0.500)	15.9 (0.625)	19.1 (0.750)	22.2 (0.875)	25.4 (1.000)	31.8 (1.250)
Threaded rod	effective cross-sectional area	Ase	mm² (inch²)	50 (0.0775)	92 (0.1419)	146 (0.2260)	216 (0.3345)	298 (0.4617)	391 (0.6057)	625 (0.9691)
r	Nominal strength as governed by steel	N _{sa}	kN	20.0	36.6	58.3	86.3	119.1	156.3	250.0
M 554 36	strength (for a single anchor)	V_{sa}	kN	12.0	22.0	35.0	51.8	71.4	93.8	150.0
ASTM A36/F1554, Grade 36	Reduction factor for seismic shear	α <i>v,seis</i>	-				0.60			
A36 Gra	Resistance modification factor for tension ²	R	-				0.80			
	Resistance modification factor for shear ²	R	-				0.75			
4	Nominal strength as governed by steel	N _{sa}	kN	25.9	47.6	75.5	111.7	154.1	202.1	323.1
155 55	strength (for a single anchor)	V_{sa}	kN	15.5	28.6	45.3	67	92.5	121.3	193.9
A F	Reduction factor for seismic shear	α <i>v,seis</i>	-				0.60			
ASTM F1554 Grade 55	Resistance modification factor for tension ²	R	-				0.80			
⋖	Resistance modification factor for shear ²	R	-				0.75			
ε 4	Nominal strength as governed by steel	N _{sa}	kN	43.1	78.9	125.7	186.0	256.7	336.8	538.8
.19; B7 155 105	strength (for a single anchor)	V _{sa}	kN	25.9	47.3	75.4	111.6	154.0	202.1	323.3
M M M	Reduction factor for seismic shear	α _{V,seis}	-				0.60			
ASTM A193 Grade B7 ASTM F1554 Grade 105	Resistance modification factor for tension ²	R	-				0.80			
4 4	Resistance modification factor for shear ²	R	-				0.75			
6	Nominal strength as governed by steel	N _{sa}	kN	41.4	76.2	120.9	178.8	246.7	323.7	450.0
84	strength (for a single anchor)	V _{sa}	kN	24.8	45.7	72.5	107.3	148	194.2	270.0
ASTM A449	Reduction factor for seismic shear	αv,seis	-				0.60			
STI	Resistance modification factor for tension ²	R	-				0.80			
⋖	Resistance modification factor for shear ²	R	-				0.75			
5	Nominal strength as governed by steel	N _{sa}	kN	25	46	73	108	149	195.5	312.5
8.5	strength (for a single anchor)	V _{sa}	kN	15	27.6	43.8	64.8	89.4	117.3	187.5
ASTM F568M Class 5.8	Reduction factor for seismic shear	αv,seis	-				0.60			
STA	Resistance modification factor for tension ³	R	-				0.70			
AS	Resistance modification factor for shear ³	R	-				0.65			
~ v	Nominal strength as governed by steel	N _{sa}	kN	34.5	63.1	100.5	126.5	174.6	229.0	366.4
293 11es	strength (for a single anchor)	V _{sa}	kN	20.7	37.9	60.3	75.9	104.7	137.4	219.8
ASTM F593 CW Stainless	Reduction factor for seismic shear	αv,seis	-				0.60			
IS N	Resistance modification factor for tension ³	R	-				0.70			
4 €	Resistance modification factor for shear ³	R	-				0.65			
5	Nominal strength as governed by steel	N _{sa}	kN	32.8	60.3	95.6	141.5	195.2	256.1	409.4
M 93ľ 93ľ 12,	strength (for a single anchor)	V _{sa}	kN	19.7	36.2	57.4	84.9	117.1	153.7	245.6
ASTM 93/A190 Grade 8/B8M2	Reduction factor for seismic shear	α <i>v,seis</i>	-		•		0.60			
ASTM A193/A193M Grade B8/B8M2, Class 2B	Resistance modification factor for tension ²	R	-				0.80			
_ × _	Resistance modification factor for shear ²	R	-				0.75			

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.31, as applicable. Nuts and washers must comply with requirements for the rod.

The tabulated value of material resistance factors & and &, and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements.

³The tabulated value of material resistance factors ♠ and ♠s, and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

DEGICAL INFORMATION		11.24				Nominal Rod D	iameter (inch)	ı	
DESIGN INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)				7 (17			
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (in-lb)				10 (24	-		
Min. anchor spacing	Smin	Mm (inch)	48 (1 ⁷ / ₈)	64 (2 ¹ / ₂)	76 (3)	95 (3 ³ / ₄)	108 (4 ¹ / ₄)	121 (4 ³ / ₄)	149 (5 ⁷ / ₈)
				45	51 (2)	60 (2 ³ / ₈)	64 (2 ¹ / ₂)	70 (2 ³ / ₄)	82 (3 ¹ / ₄)
Min. edge distance	Cmin	mm (inch)	41 (1 ⁵ / ₈)	(1 ³ / ₄)	For e	edge distances t see Table 1 o		nch)	For edge distances to 70 mm (2 ³ / ₄ -inch), see Table 1 of this report.
Min. member thickness	h _{min}	mm (inch)	h _{ef} + (h _{ef} +				h _{ef} + 2	d ₀ ³	
Critical edge distance - splitting (for uncracked concrete only) ²	Cac	-				2h	l ef		
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	ı				1.0	00		
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	ı				1.0	00		

¹Additional setting information is described in Figure 3, installation instructions.

TABLE 6—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

	DECION INFORMATION	0	Haita		No	minal Re	od Diam	eter (inc	:h)	
	DESIGN INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	1 ¹ / ₄
Minimum embedme	ent	h _{ef,min}	mm (inch)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	79 (3 ¹ / ₈)	89 (3 ¹ / ₂)	89 (3 ¹ / ₂)	102 (4)	127 (5)
Maximum embedm	nent	h _{ef,max}	mm (inch)	191 (7 ¹ / ₂)	254 (10)	318 (12 ¹ / ₂)	381 (15)	445 (17 ¹ / ₂)	508 (20)	635 (25)
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	17.9	16.6	15.6	14.8	14.2	13.8	13.7
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm²	7.2	7.2	7.7	8.4	8.4	8.3	7.9
Temperature	Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	N/mm²	15.6	14.5	13.6	12.8	12.3	12.0	11.9
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm²	6.2	6.2	6.7	7.3	7.3	7.2	6.9
Temperature			N/mm²	11.2	10.4	9.8	9.3	8.9	8.6	8.6
range C ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm²	4.5	4.5	4.8	5.3	5.2	5.2	5.0
Dr. Conoroto	Anchor category	-	-	1						
Dry Concrete	Permissible installation condition factor	Rd	-	1.00						
Water-saturated	Anchor category	-	-	2						
concrete	Permissible installation condition factor	R _{ws}	-				0.85			
Water-filled holes	Anchor category	-	-			•	3			·
water-inled fibles	Permissible installation condition factor	R _{wf}	-				0.75			
Reduction factor fo	or seismic tension	∝N,seis	ı				0.95			

Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

 $^{^{3}}$ d_{0} = hole diameter.

tabulated characteristic bond strength may be increased by a factor of $(r_c/2500)^{0.10}$. ²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³ Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

TABLE 7—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS 1

DECIG	NI INCORMATION	0	11-4-				Nomina	l Bar Size			
DESIG	INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Reinfo	rcing bar O.D.	d	mm (inch)	9.5 (0.375)	12.7 (0.500)	15.9 (0.625)	19.1 (0.750)	22.2 (0.875)	25.4 (1.000)	28.6 (1.125)	31.8 (1.250)
	rcing bar effective cross- nal area	A _{se}	mm² (inch²)	71 (0.110)	129 (0.200)	200 (0.310)	284 (0.440)	387 (0.600)	510 (0.790)	645 (1.000)	819 (1.270)
	Nominal strength as	Nsa	kN	44.0	80.1	124.1	176.0	240.0	316.0	400.0	508.0
A996	governed by steel strength (for a single anchor)	V _{sa}	kN	26.4	48.0	74.5	105.7	144.1	189.8	240.2	305.0
A767, le 60	Reduction factor for seismic shear	α v,seis	-				0	.65			
ASTM A615, Grac	Resistance modification factor for tension ³	R	-				0	.70			
ASTI	Resistance modification factor for shear ³	av,seis - 0.65 ication R - 0.70 ication R - 0.65 n as N _{sa} kN 39.1 71.2 110.3 156.6 213.5 281.1 355.9 or a single V _{sa} kN 23.5 42.7 66.2 93.9 128.1 168.7 213.5 ismic a _{V,seis} 0.65									
	Nominal strength as governed by	N _{sa}	kN	39.1	71.2	110.3	156.6	213.5	281.1	355.9	452.0
de 60	steel strength (for a single anchor)	V _{sa}	kN	23.5	42.7	66.2	93.9	128.1	168.7	213.5	271.2
A706 Grade	Reduction for seismic shear	αv,seis					0.	65			
ASTM A7	Resistance modification factor ϕ for tension ²	R					0	.80			
AS	Resistance modification factor ϕ for shear ²	R					0	.75			
	Nominal strength as	N _{sa}	kN	29.4	53.4	82.7	117.4				
le 40	governed by steel strength (for a single anchor)	V _{sa}	kN	17.6	32.0	49.6	70.5			with ASTM A6	
ASTM A615 Grade 40	Reduction factor for seismic shear	α v,seis	-		Grade 40 bars are furnish through		112e5 IVO. 3				
STM A(Resistance modification factor for tension ³	R	-	0.70							
A§	Resistance modification factor for shear ³	R	-				0	.65			

¹Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DEGICAL INFORMATION						Non	ninal Bar Si	ze		
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
Effectiveness factor for cracked concrete	K c,cr	SI (in-lb)					7 (17)			
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (in-lb)					10 (24)			
Min. anchor spacing	Smin	mm (inch)	48 (1 ⁷ / ₈)	64 (2 ¹ / ₂)	76 (3)	95 (3 ³ / ₄)	108 (4 ¹ / ₄)	121 (4 ³ / ₄)	133 (5 ¹ / ₄)	149 (5 ⁷ / ₈)
					51 (2)	60 (2 ³ / ₈)	64 (2 ¹ / ₂)	70 (2 ³ / ₄)	76 (3)	82 (3 ¹ / ₄)
Min. edge spacing	C _{min}	mm (inch)	41 (1 ⁵ / ₈)	44 (1 ³ / ₄)	F		ances to 45 able 1 of thi	mm (1¾-inc s report.	n),	For edge distances to 70 mm (2¾-inch), see Table 1 of this report.
Min. member thickness	h _{min}	mm (inch)		+ 30 + 1 ¹ / ₄)				$h_{ef} + 2d_0^3$		
Critical edge spacing – splitting (for uncracked concrete)	Cac	-					2h _{ef}			
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	-					1.00			
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-			1.00					

¹Additional setting information is described in Figure 3, installation instructions.

²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to ductile steel elements

³The tabulated value of material resistance factors *𝔞*c and *𝔞*s, and resistance modification factor, *R*, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

 $^{^{3}}$ d_{0} = hole diameter.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

	DIGIELED WITH A TIP												
DESIGN INFORM	AATION					1	Nominal	Bar Size	<u> </u>				
DESIGN INFORM	MATION	Symbol	Units	No.3	No. 4	No. 5	No. 6	No. 7	No.10				
Minimum embedr	ment	h _{ef,min}	mm (inch)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	79 (3 ¹ / ₈)	89 (3 ¹ / ₂)	89 (3 ¹ / ₂)	102 (4)	114 (4 ¹ / ₂)	127 (5)		
Maximum embed	ment	h _{ef,max}	mm (inch)	191 (7 ¹ / ₂)	254 (10)	318 (12 ¹ / ₂)	381 (15)	445 (17 ¹ / ₂)	508 (20)				
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	15.2	14.5	14.0	13.6	13.2	13.0	12.7	12.5		
range A ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm²	7.5	7.3	7.8	8.1	8.1	8.1 8.0 7.9				
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	13.2	12.6	12.2	11.8	11.5	11.3				
range B ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm²	6.5	6.3	6.8	7.0	7.0	6.9	6.8	7.0		
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	9.5	9.1	8.8	8.5	8.3	8.1	8.0	7.8		
range C ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm²	4.7	4.6	4.9	5.1	5.1	5.0	4.9	5.0		
Drygonoroto	Anchor category	-	-				,	ı					
Dry concrete	Permissible installation condition factor	Rd	-				1.0	00					
Water-saturated	Anchor category	-	-				2	2					
concrete	Permissible installation condition factor	R _{ws}	-				0.8	85					
Water-filled	Anchor category	-	-				3	3					
holes	Permissible installation condition factor	R _{wf}	-				0.	75					
Reduction factor	for seismic tension	∝N,seis	-	0.9	95			1.0	00				

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.10}$.

TABLE 10—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD1

DE014	NI INFORMATION	0					Nominal Rod [Diameter (mm)		
DESIG	ON INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Threa	ded rod O.D.	d	mm (inch)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)
	ded rod effective cross- nal area	A _{se}	mm² (inch²)	58.0 (0.090)	84.3 (0.131)	157 (0.243)	245 (0.380)	353 (0.547)	459 (0.711)	561 (0.870)
	Nominal strength as	N _{sa}	kN	29.0	42.2	78.5	122.5	176.5	229.5	280.5
s 5.8	governed by steel strength (for a single anchor)	V _{sa}	kN	17.4	25.3	16 (0.63) (0.79) (0.94) (1.06) 3 157 (245 (0.547) (0.711) 2 78.5 122.5 176.5 229.5 3 47.1 73.5 105.9 137.7 0.60 0.70 0.65 4 125.6 196 282.4 367.2 75.4 117.6 169.4 220.3 0.60 0.70 0.65 109.9 171.5 247.1 229.5 4 65.9 102.9 148.3 137.7 0.60 0.70	168.3			
1 Class	Reduction factor for seismic shear	α <i>v,sei</i> s	-				0.60			
SO 898-1	Resistance modification factor for tension ²	R	-				0.70			
<u>SS</u>	Resistance modification factor for shear ²	R	-				0.65			
	Nominal strength as	N _{sa}	kN	46.4	67.4	125.6	196	282.4	367.2	448.8
Class 8.8	governed by steel strength (for a single anchor)	V _{sa}	kN	27.8	40.5	75.4	117.6	169.4	220.3	269.3
1 Clas	Reduction factor for seismic shear	α <i>v,sei</i> s	-				0.60			
J 898-1	Resistance modification factor for tension ²	R	-				0.70			
ISO	Resistance modification factor for shear ²	R	-				0.65			
	Nominal strength as	N _{sa}	kN	40.6	59	109.9	171.5	247.1	229.5	280.5
-1, steel ³	governed by steel strength (for a single anchor)	V _{sa}	kN	24.4	35.4	65.9	102.9	148.3	137.7	168.3
(() ,	Reduction factor for seismic shear	$\alpha_{V,seis}$	-				0.60			
ISO stair	Resistance modification factor for tension ²	R	-				0.70			
A	Resistance modification factor for shear ²	R	-				0.65			

¹Values provided for common rod material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3. Nuts and washers must comply with requirements for the rod.

Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

²The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used. Values correspond to brittle steel elements

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30)

TABLE 11—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

DEGICAL INFORMATION						Nominal Rod D	iameter (mm)			
DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30	
Effectiveness factor for cracked concrete	k _{c,cr}	SI (in-lb)				7 (17	·)			
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (in-lb)				10 (24				
Min. anchor spacing	S _{min}	mm (inch)	50 (2)	60 (2 ³ / ₈)	75 (3)	95 (3 ³ / ₄)	115 (4 ¹ / ₂)	125 (5)	140 (5 ¹ / ₂)	
		mm		45	50 (2)	60 (2 ³ / ₈)	65 (2 ¹ / ₂)	75 (3)	80 (3 ¹ / ₈)	
Min. edge distance	Cmin	mm (inch)	40 (1 ⁵ / ₈)	(1 ³ / ₄)	For	edge distances to see Table 1 c	ch),	For edge distances to 70 mm (2 ³ / ₄ -inch), see Table 1 of this report.		
Min. member thickness	h _{min}	mm (inch)		+ 30 + 1 ¹ / ₄)			h _{ef} + 2d ₀	3		
Critical edge distance - splitting (for uncracked concrete only)	Cac	-				2 <i>h</i> e	ef			
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	=		1.00						
Resistance modification factor for shear, concrete failure modes, Condition B ²	R					1.0	0			

¹Additional setting information is described in Figure 3, installation instructions.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT1

	DEGION INFORMATION		11.56	Nominal Rod Diameter (inch)									
	DESIGN INFORMATION	Symbol	Units	M10	M12	M16	M20	M24	M27	M30			
Minimum embedr	ment	h _{ef,min}	mm (inch)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)			
Maximum embed	ment	h _{ef,max}	mm (inch)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)			
Temperature	Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	N/mm²	17.7	16.9	15.6	14.6	13.9	13.7	13.7			
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm²	7.2	7.2	7.7	8.4	8.3	8.3	7.9			
Temperature	Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	N/mm²	15.4	14.7	13.5	12.7	12.1	11.9	11.9			
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$ au_{k,cr}$	N/mm²	6.2	6.3	6.7	7.3	7.2	7.2	6.9			
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	11.1	10.6	9.8	9.1	8.7	8.6	8.6			
range C ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm²	4.5	4.5	4.8	5.3	5.2	5.2	5.0			
Dry	Anchor category	-	-				1						
concrete	Permissible installation condition factor	Rd	=				1.00						
Water-saturated	Anchor category	-	-				2						
concrete	Permissible installation condition factor	R _{ws}					0.85						
Water-filled	Anchor category	-	-		•	•	3			·			
holes	Permissible installation condition factor	R _{wf}	-				0.75						
Reduction factor	for seismic tension		ı				0.95						

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14 are used.

 $^{^{3}}$ d_{0} = hole diameter.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f_c /2500)^{0.10}.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C).

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

TABLE 13—STEEL DESIGN INFORMATION FOR COMMON METRIC EU AND METRIC CANADIAN REINFORCING BARS 1

DE014	Resistance modification factor for shear ² SIGN INFORMATION Inforcing bar O.D. Inforcing bar effective crossitional area Nominal strength as governed by steel						Nominal B	ar Size (EU)			
DESIG	SN INFORMATION	Symbol	Units	ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	ø 32
Reinfo	orcing bar O.D.	d	mm (inch)	10 (0.315)	12 (0.394)	14 (0.472)	16 (0.551)	20 (0.630)	25 (0.787)	28 (1.102)	32 (1.260)
		Ase	mm² (inch²)	78.5 (0.112)	113.1 (0.175)	153.9 (0.239)	201.1 (0.312)	314.2 (0.487)	490.9 (0.761)	615.8 (0.954)	804.2 (1.247)
		N _{sa}	kN	43.2	62.2	84.7	110.6	172.8	270.0	338.7	442.3
200		V _{sa}	kN	25.9	37.3	50.8	66.4	103.7	162.0	203.2	265.4
DIN 488 BSt 500		<i>α</i> v, seis	-			•	0	.65			
OIN 48	Resistance modification factor for tension ²	R	-				1	.00			
_	Resistance modification factor for shear ²	R	-				1	.00			
DECK	N INCORMATION	Symbol	Units				Nominal B	ar Size (CA)			
DESI	SNINFORMATION	Symbol	Units	10 M		15 M	2	M	25 M		30 M
Reinfo	orcing bar O.D.	d	mm (inch)	11.3 (0.445		16 (0.630)		9.5 768)	25.2 (0.992)		29.9 (1.177)
		A _{se}	mm² (inch²)	100.3 (0.155		201.1 (0.312)		98.6 463)	498.8 (0.773)		702.2 (1.088)
		N _{sa}	kN	54.0		108.5	16	61.5	270.0		380.0
0.18	strength (for a single	V _{sa}	kN	32.5		65.0	9	7.0	161.5		227.5
3A-G3de 40C		<i>α</i> v,seis	-				0	.65			
CAN/CSA-G30.18 Grade 400	Resistance modification factor for tension ²	R	-				1	.00			
O	Resistance modification factor for shear ²	R	-			1.00					

¹ Values provided for common bar material types based on specified strengths and calculated in accordance with CSA A23.3-14 Eq. D.2 and Eq. D.3.

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION COMMON EU METRIC AND CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DECION INFORMATION	0	1114						No	minal Ba	ar Size					
DESIGN INFORMATION	Symbol	Units	Ø 10	10 M	Ø 12	Ø 14	15 M	Ø 16	Ø 20	20 M	Ø 25	25 M	Ø 28	30 M	Ø 32
Effectiveness factor for cracked concrete	K _{c,cr}	SI (in-lb)							7 (17)						
Effectiveness factor for uncracked concrete	K _{c,uncr}	SI (in-lb)							10 (24)						
Min. anchor spacing	Smin	mm (inch)	50 (2)	55 (2 ¹ / ₈)	60 (2 ³ / ₈)	70 (2 ³ / ₄)	80 (3 ¹ / ₈)	75 (3)	95 (3 ³ / ₄)	100 (3 ⁷ / ₈)	120 (4 ⁵ / ₈)	125 (5.0)	130 (5 ¹ / ₄)		150 5 ⁷ / ₈)
						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							85 (3 ¹ / ₈)		
Min. edge spacing	Cmin	mm (inch)	40 (1 ⁵ / ₈)	40 (1 ³ / ₄)	45 (1 ³ / ₄)		For			o 45 mm (of this repo),	to 7	0 mm (2	istances 2 ³ / ₄ -inch), 1 of this rt.
Min. member thickness	h _{min}	mm (inch)	(h _{ef} + 30 h _{ef} + 1 ¹ / ₄						h _{ef} +	· 2d ₀ ³				
Critical edge spacing – splitting (for uncracked concrete only)	Cac	-							2h _{ef}						
Resistance modification factor for tension, concrete failure modes, Condition B ²	R	ı				1.00									
Resistance modification factor for shear, concrete failure modes, Condition B ²	R	-		1.00											

¹Additional setting information is described in Figure 3, installation instructions.

²The tabulated value of the material resistance factors 𝑉 and 𝑉 and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in CSA A23.3-14 D.5.3. The tabulated value of the material resistance factors ϕ_c and ϕ_s , and resistance modification factor, R, applies when the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or Annex C of CSA A23.3-14.

 $^{^{3}}$ d_{0} = hole diameter.

TABLE 15—BOND STRENGTH DESIGN INFORMATION COMMON EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DECION INFORM	AATION						Nominal	Bar Size	;		
DESIGN INFORM	MATION	Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Minimum embedi	ment	h _{ef,min}	mm (inch)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	90 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
Maximum embed	ment	h _{ef,max}	mm (inch)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm²	15.1	14.6	14.0	14.0	13.5	13.0	12.8	12.5
range A ^{2,3} :	Characteristic bond strength in cracked concrete	$\tau_{k,cr}$	N/mm²	7.5	7.3	7.9	8.2	8.2	8.0	7.9	8.0
Temperature	Characteristic bond strength in uncracked concrete	$ au_{k,uncr}$	N/mm²	13.1	12.7	12.1	12.1	11.7	11.3	11.1	10.9
range B ^{2,3} :	Characteristic bond strength in cracked concrete	$\tau_{k,cr}$	N/mm²	6.5	6.4	6.9	7.2	7.1	6.9	6.9	7.0
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm²	9.4	9.2	8.8	8.8	8.4	8.2	8.0	7.8
range C ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm²	4.7	4.6	4.9	5.2	5.1	5.0	8.0 7.9 11.3 11.1 6.9 6.9 8.2 8.0	5.0
Dry	Anchor category	-	-				1				
concrete	Permissible installation condition factor	R₀	-				1.0	00			
Water-saturated	Anchor category	_	1				2	2			
concrete	concrete Permissible installation condition factor R _{ws}						3.0	35			
Water-filled	Anchor category	-	-				3	3			
holes	Permissible installation condition factor	R _{wf}	-			•	0.7	75			
Reduction factor	for seismic tension	C(N,seis	-	0.	95			1.0	00		· ·

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may not be increased.

TABLE 16—BOND STRENGTH DESIGN INFORMATION COMMON CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DECION INFORM	ATION		1114		No	minal Bar Siz	e (CA)	
DESIGN INFORM	ATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Minimum embedm	nent	h _{ef,min}	mm (in.)	70 (2.8)	80 (3.1)	90 (3.5)	100 (3.9)	120 (4.7)
Maximum embedn	nent	h _{ef,max}	mm (in.)	225 (8.9)	320 (12.6)	390 (15.4)	505 (19.8)	600 (23.5)
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm² (psi)	14.5 (2,110)	13.2 (1,916)	12.5 (1,814)	11.7 (1,690)	11.1 (1,612)
range A ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	7.2 (1,041)	7.5 (1,087)	7.2 (1,045)	6.7 (965)	6.3 (915)
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm² (psi)	12.7 (1,836)	11.5 (1,667)	10.9 (1,578)	10.1 (1,470)	9.7 (1,402)
range B ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	6.2 (906)	6.5 (946)	6.3 (909)	5.8 (840)	5.5 (796)
Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	N/mm² (psi)	9.1 (1,633)	8.3 (1,201)	7.8 (1,137)	7.3 (1,059)	7.0 (1,010)
range C ^{2,3} :	Characteristic bond strength in cracked concrete	Tk,cr	N/mm² (psi)	5.6 (806)	5.8 (841)	5.6 (809)	5.2 (747)	4.9 (708)
Dry	Anchor category	_	1			1		
concrete	Permissible installation condition factor	R_d	-			1.00		
Water-saturated	Anchor category	-	-			2		
concrete	Permissible installation condition factor	R _{ws}	-			0.85		
Water-filled holes	Anchor category	_	-			3	5.8 (840) 7.3 (1,059) 5.2 (747)	
vvaler-illed notes	Permissible installation condition factor	R _{wf}	-			0.75		
Reduction factor for	or seismic tension	∝N,seis	-	0	.95		1.00	

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may not be increased. See Section 4.1.4 of this report.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C); Temperature range B: Maximum short term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C); Temperature range C: Maximum short term temperature = 320°F (160°C), maximum long term temperature = 212°F (100°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 23 percent for temperature range C.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- 2. Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- Anchors must be limited to use in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, f'c, of 2,500 psi (17.2 MPa) to 8,500 psi (58.6 MPa).
- 6. The values of f'c, used for calculation purposes must not exceed 55 MPa. The values of f'c, used for calculation of tension resistance must be lmited to 17.2 MPa maximum for EU metric reinforcing bars used as anchorage in cracked concrete only.
- 7. Limit states design values must be established in accordance with this listing report.
- 8. The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- Anchors may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2015.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3-14, the DEWALT AC200+ adhesive anchor system is permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - a. Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support a fire-resistance-rated envelope or a fire- resistance-rated membrane are protected by approved fire-resistance- rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of hot-dipped galvanized carbon steel and stainless steel rods as specified in this report are permitted for exterior exposure and damp environments.
- Steel anchoring materials in contact with preservative-treated wood and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- 14. Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program, and the certification shall include written and performance tests in accordance with the ACI/CRSI Adhesive Anchor Installer Certification program, or equivalent in accordance with CSA A23.3-14 D.10.2.3. The installation shall be continuously inspected during installation by an inspector specially approved for that purpose. The special inspector shall furnish a report to the licensed design professional and building official that the work covered by the report has been performed and that the materials used and the installation procedures used conform with the approved contract documents and the MPII in accordance with CSA A23.3-14 D.10.2.4.
- 15. AC200+ Adhesive Anchors may be used to resist tension and shear forces in wall (horizontal) and for overhead (upwardly inclined) installations into concrete with a temperature between -5°C and 40°C; and between -10°C and 40°C for floor (downward) installations.
- 16. Anchors shall not be used for installations where the concrete temperature can vary from 5°C or less, to 27°C or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade system and other applications to direct sun exposure.
- 17. Periodic special inspection must be provided in accordance with CSA A23.3-14 Section D.10.2.2.